Schweizerische Eidgenossenschaft Dipartimento federale delle finanze DFF
Confédération suisse
Confederazione Svizzera
Confederaziun svizra

Matthias Ruedlinger

Ufficio federale dell'informatica e della telecomunicazione
Centro soluzioni

Soluzioni Berna

Sviluppi 1

Verifica della firma XML e-dec

Raccomandazioni per la verifica delle firme
digitali (WS security)

Nome del progetto: e-dec
Versione: 0.3
Data: 19.5.2009
Stato in elaborazione in esame approvato per
l'utilizzazione
O Ol M
Cerchia delle persone interessate
Autore: Matthias Riedlinger (mru)
Approvazione: gruppo di progetto e-dec IDEA
Utenti: AFD, responsabile del progetto
Per informazione: AFD
Controllo delle modifiche, verifica e approvazione
Quando Versione | Chi Descrizione
2442009 |0.1 mru Prima versione
14.5.2009 (0.2 mru Aggiunta dell’esempio di codice Java
15.5.2009 (0.3 mru, shu Adeguamenti nel paragrafo CRL e adeguamento del

titolo

e-dec

Indice

1 TN 0o U 4 o T o = 200 3
1.1 OSSEIVAZIONEeeiieeeiiiiiiiiee et e e ettt e e e e e e s e bbbttt e e e e e e s s bbb e et e e e e e e e s sabbbeeeeeeeeeeeaans 3
1.2 RIFEIIMENTI ... et e e e ettt s e e e e e e e e et b e e e eeeeeenrens 3
2 TOOI / FrAMEBWOTK ... e e e e e et e e e e e e e e ea bt e e eeeees 4
3 Verifica della firma XML CON JAVA........ouuuiiiiiiiiiiiiiiiiiiiiieiiieieiennieeeneenneeneeneeeenneennennne 5
3.1 Firma digitale XML AP ...t e e 5
3.1.1 Esempio: verifica della firma XML ..o 5
3.1.2 Esempio: NamespaceContext Implementationccceveviiiiiieeeeeeeeviiceneeeen, 7
3.2 CRL - Certificate Revocation List (lista dei certificati revocati)............................. 8
4 [0 1 TR TP PP PPUPPPPPPPPTIN 9

2/9

e-dec

1 Introduzione

Il presente documento é rivolto ai clienti e-dec della dogana e ai fornitori di software che in-
tendono verificare la firma XML delle decisioni d'imposizione elettroniche (IMe).

I documento spiega come attuare le disposizioni per EdecReceiptService figuranti nella de-
scrizione dell'interfaccia [1] e nel contratto di servizio [2].

La verifica della firma di documenti XML é stata specificata dall’'organizzazione W3C. La
specificazione XML Signature Syntax and Processing (XMLDsig) puo essere consultata al
link seguente:

http://www.w3.org/TR/xmldsig-core/.

Per procedere alla verifica della firma di un documento XML, il linguaggio di programmazione
o il framework corrispondenti devono attuare lo standard W3C XML Signature Syntax and
Processing (XMLDsig).

La firma XML é contenuta in una busta SOAP. L’inclusione della firma nell'intestazione
SOAP avviene in base allo standard WS security.

1.1 Osservazione

Gli esempi di codici riportati servono solo quale guida nella procedura di verifica della firma e
della catena di fiducia (chain of trust) del certificato in una risposta IMe. La resa del codice
non e stata ottimizzata.

1.2 Riferimenti

| documenti riportati qui appresso contengono informazioni relative alla firma digitale
nell’ambito e-dec.

Rif. Titolo Versione
[1] Descrizione dell'interfaccia e-dec decisione d’'imposizione (descrizione dei | 1.5
messaggi in entrata e in uscita per il servizio).
[2] Service Contract EdecReceiptService (disponibile solo in tedesco; descri- | 1.3
zione dei canali di comunicazione — servizio Internet e e-mail).

3/9

http://www.w3.org/TR/xmldsig-core/

e-dec

2 Strumenti/

framework

L’elenco sottostante rappresenta una selezione di strumenti e framework utilizzabili per la

verifica della firma XML.

diante le APl XML fornite.

Strumenti / Descrizione URL
framework
Java SE 6 Permette di verificare le firme me- http://java.sun.com/javase/

Apache XML Security

Permette di verificare le firme XML
per Java o C++ grazie a un’apposita
biblioteca.

http://santuario.apache.org/

IAIK XML Security
Toolkit (XSECT)

Si tratta di una biblioteca Java com-
merciale per la verifica delle firme
XML.

http://jce.iaik.tugraz.at

4/9

http://java.sun.com/javase/
http://santuario.apache.org/
http://jce.iaik.tugraz.at/

e-dec

3 Verifica della firma XML con Java

Si consiglia di utilizzare la firma digitale XML API (JSR 105) specificata da Java Community
Process (JCP). Qui appresso sono elencate alcune implementazioni.

e A partire da Java 6, la firma digitale XML API é integrata nell'edizione Java standard.
o Apache XML Security &€ un’implementazione libera della firma digitale XML API.

e L’IAIK XML Security Toolkit (XSECT) & un'implementazione commerciale della firma
digitale XML API.

3.1 Firmadigitale XML API

L'esempio sottostante utilizza l'interfaccia standard della firma digitale XML API ed & dunque
irrilevante quale implementazione si decida di impiegare. Vi sono alcune differenze solo per
quanto riguarda la registrazione del provider di sicurezza.

Osservazione: in questo esempio la CRL (certificate revocation list, lista dei certificati revo-
cati) della PKI (public key infrastructure, infrastruttura per le chiavi pubbliche) Admin non
viene ancora controllata.

3.1.1 Esempio: verifica della firma XML

Dapprima viene letto il documento XML. E importante che il DocumentBuilder sia Namespa-
ceAware.

InputStream is = XMLDsigClient.class.getResourceAsStream(‘'eVVResponse.xml™);

// create DocumentBuilderFactory which is Namespace aware
DocumentBui lderFactory builderFactory = DocumentBuilderFactory.newlnstance();
bui lderFactory.setNamespaceAware(true);

DocumentBuilder builder = builderFactory.newDocumentBuilder();
logger.info(*'Is DocumentBuilder NamespaceAware: ' + builder.isNamespaceAware());

// parse xml file (dumped soap request)
Document xmldoc = builder.parse(is);

XPath deve essere inizializzato con un proprio NamespaceContext affinché si possa utiliz-
zare il Namespace nell'interrogazione XPath. Il NamespaceContextimpl implementa il Na-
mespaceContext dell’interfaccia e deve essere creato dall’'utente stesso (v. esempio relativo
al NamespaceContext).

// create XPath object which has own NamespaceContext

XPath xpath = XPathFactory.newlnstance() .newXPath();

// with a custom NamespaceContext we can use Namespaces in our XPath query
NamespaceContext nsc = new NamespaceContextimpl();
Xpath.setNamespaceContext(nsc);

Con XPath e possibile estrarre il X509 Token. Esso contiene un certificato X509 codificato in
Base64.

5/9

e-dec

// extract x509 Token --> xml element wsse:BinarySecurityToken
XPathExpression expr = xpath.compile(*'//wsse:Security/wsse:BinarySecurityToken™);
Node x509Node = (Node) expr.evaluate(xmldoc, XPathConstants.NODE);

Si possono utilizzare i dati del X509 Token per creare un certificato X509. Tuttavia, nel certi-
ficato occorre marcare I'inizio con ----- BEGIN CERTIFICATE----- e la fine con ----- END CER-
TIFICATE----- ; in caso contrario la lettura del certificato non é possibile.

// X509 Token is encoded in base64

String header = ""---—- BEGIN CERTIFICATE----—- \n";

String footer = "\n----- END CERTIFICATE----- "

// so we need a to add the certificate header and footer

// to the raw x509 data

byte[] x509data = (header + x509Node.getTextContent() + footer).getBytes();
ByteArraylnputStream bis = new ByteArraylnputStream(x509data);

// create certificate
CertificateFactory cf = CertificateFactory.getlnstance(*'X.509");

X509Certificate cert = (X509Certificate) cf.generateCertificate(bis);

A questo punto, il certificato X509 e la catena di fiducia vengono verificati mediante il certifi-
cato CA. Se il certificato o la catena di fiducia non sono validi, il CertPathValida-
tor.validate(...) lancia un’eccezione.

// verify ca chain

// read in ca cert

is = XMLDsigClient.class.getResourceAsStream(*'adminca-cd-t01_BIT_CA certificate.crt™);
X509Certificate caCert = (X509Certificate) cf.generateCertificate(is);

// trusted ca cert
Set<TrustAnchor> trust = Collections.singleton(new TrustAnchor(caCert, null));
PKIXParameters params = new PKIXParameters(trust);

// Disable CRL checking since we are not supplying any CRLs
params.setRevocationEnabled(false);

// sets the time for which the validity of the certification
// path should be determined

params.setDate(new Date());

CertPath certPath = cf._generateCertPath(Collections.singletonList(cert));

CertPathValidator certPathValidator = CertPathValidator.getlnstance("PKIX™);

PKIXCertPathValidatorResult result = (PKIXCertPathValidatorResult) certPathValidator
.validate(certPath, params);

L’elemento di firma XML viene estratto mediante XPath e viene inizializzato un JSR 105 pro-
vider. In questo caso il provider viene inizializzato esplicitamente; cid € necessario se, ad
esempio, si lavora con Apache XML Security. Nel caso di Java 6, € gia registrato un provider
di firma digitale XML API (JSR 105) e questo passaggio non dovrebbe dunque essere ne-
cessario.

// extract xml element ds:Signature

expr = xpath.compile("'//wsse:Security/ds:Signature™);

Node dsSignature = (Node) expr.evaluate(xmldoc, XPathConstants.NODE);
DOMValidateContext context = new DOMValidateContext(cert.getPublicKey(), dsSignature);

String providerName = System.getProperty("'jsrl05Provider",
"org.-jcp.-xml._dsig.internal .dom.XMLDSigRI");

logger.info(""jsr 105 provider: " + providerName);

XMLSighatureFactory factory = XMLSignatureFactory.getinstance(*'DOM", (Provider) Class
.FforName(providerName) .newlnstance());

XMLSignature signature = factory.unmarshalXMLSignature(context);

6/9

e-dec

La firma XML viene verificata con il DOMValidateContext. Quest'ultimo possiede la chiave
pubblica e un riferimento all'elemento di firma XML.

// Check core validation status
boolean coreValidity = signature.validate(context);

iT (corevalidity == false) {

logger.error(*'Signature failed core validation!");
boolean sv = signature.getSignatureValue().validate(context);
logger.info('Signature validation status: " + sv);

// Check the validation status of each Reference
Iterator<Reference> i = signature.getSignedInfo().getReferences().iterator();

for (int j = 0; i.hasNext(Q); j++) {
// signature was not valid so try to find out which refrence was invalid
Reference ref = i.next();
boolean refvalid = ref.validate(context);
String id = ref.getURI();
logger.info('Reference (" + j + ™) with URI [+ id + "] validation status: "
+ refvalid);
}

else {
logger.info(’'Signature passed core validation!™);

}

3.1.2 Esempio: NamespaceContext Implementation

Questa é I'implementazione NamespaceContext che riconosce tuttii Namespace necessatri
della risposta IMe. Il NamespaceContext permette di effettuare le interrogazioni XPath con i
prefissi corrispondenti. In tal modo, si garantisce il mapping tra i prefissi e i Namespace.

public class NamespaceContextImpl implements NamespaceContext{

public static final String NS_URI_WSSE = "http://docs.oasis-open.org/wss/2004/01/o0asis-
200401-wss-wssecurity-secext-1.0.xsd";

public static final String PREFIX_WSSE = "‘wsse";

public static final String NS_URI_SOAP_ENV = "http://schemas.xmlsoap.org/soap/envelope/";

public static final String PREFIX_SOAP_ENV = "soap";

public static final String NS_URI_XMLDSIG = "http://www.w3.0rg/2000/09/xmldsig#";

public static final String PREFIX_XMLDSIG = “ds";

public static final String NS_URI_EVV = "http://www.e-
dec.ch/xml/schema/edecReceiptResponse/v1™;

public static final String PREFIX_EVV = "ewv";

private Map<String, String> value = new HashMap<String, String>();

public NamespaceContextimpl() {
value.put(PREFIX_EVV, NS_URI_EW);
value .put(PREFIX_SOAP_ENV, NS_URI_SOAP_ENV);
value.put(PREFIX_WSSE, NS_URI_WSSE);
value .put(PREFIX_XMLDSIG, NS_URI_XMLDSIG);

¥

public String getNamespaceURI(String prefix) {
return value.get(prefix);
}

public String getPrefix(String uri) {
throw new UnsupportedOperationException();
}

public lterator<String> getPrefixes(String uri) {
throw new UnsupportedOperationException();
}

}

7/9

e-dec

3.2 CRL - Certificate Revocation List (lista dei certificati revocati)

In questo esempio di codice, la CRL non viene ancora verificata. Una lista dei certificati re-
vocati € ottenibile alla pagina iniziale del sito Admin PKI.

http://www.pki.admin.ch/crl.php

8/9

http://www.pki.admin.ch/crl.php

e-dec

4 Fonti

Specificazione XML Signature Syntax and Processing (XMLDsig)
http://www.w3.0org/TR/xmldsig-core/

XMI Digital Signature APl (JSR 105)
http://jcp.org/en/jsr/detail?id=105

Apache XML Security
http://santuario.apache.org/

IAIK XML Security Toolkit (XSECT)
http://jce.iaik.tugraz.at/sic/products/xml|_security/xsect

Articolo: XML Signature with JSR-105 in Java SE 6
http://today.java.net/pub/a/today/2006/11/21/xml-signature-with-jsr-105.html?page=1

Articolo: Using JSR 105 with JDK 1.4 or 1.5
http://weblogs.java.net/blog/mullan/archive/2008/02/using jsr 105 w_ 1.html

Presentazione: XML Security and JSR 105-106
http://www.parleys.com/display/PARLEYS/XML+Security+and+JSR+105-106

9/9

http://www.w3.org/TR/xmldsig-core/
http://jcp.org/en/jsr/detail?id=105
http://santuario.apache.org/
http://jce.iaik.tugraz.at/sic/products/xml_security/xsect
http://today.java.net/pub/a/today/2006/11/21/xml-signature-with-jsr-105.html?page=1
http://weblogs.java.net/blog/mullan/archive/2008/02/using_jsr_105_w_1.html
http://www.parleys.com/display/PARLEYS/XML+Security+and+JSR+105-106

