Schweizerische Eidgenossenschaft
Confédération suisse
Confederazione Svizzera
Confederaziun svizra

Matthias Ruedlinger

Département fédéral des finances DFF

Office fédéral de I'informatique et de la télécommunication OFIT
Centre de solutions

Solutions Berne

Développement 1

Controle des signatures XML e-dec

Recommandations pour la mise en ceuvre du
contrble des signatures numériques (WS-
Security)

Nom du projet:

Version:
Date:

Statut

e-dec
0.3
2009-05-27

en travaux

a

a l'examen approuvé pour
utilisation
O M

Personnes concernées

Auteurs: Matthias Riedlinger (mru)
Approbation: Equipe de projet e-dec IDEE
Utilisateurs: AFD, direction du projet

Pour information / pour prendre
connaissance:

AFD

Contrdle des modifications, examen, approbation

Quand Version | Qui Description

2009-04-24 |0.1 mru Premiére version

2009-05-14 |0.2 mru Ajouté exemple de code Java

2009-05-15 |0.3 mru, shu Adaptations dans le chapitre CRL, adaptation du titre

f_Empfehlungen fiir XML-Signaturpriifung_v0.3.doc

P:\f_Empfehlungen fir XML-Signaturprifung_v0.3.doc

e-dec

Table des matieres

1 INEFOAUCTION L.t s 3
1.1 [L=T 0 0 F= T [T PR 3
1.2 =] (=T (=] o =T PO PEEEERR 3
2 OULIIS /T FrameEWOIKS ..o 4
3 Controle de la signature XML avecC Javaccccoeeeeeiieeiieeeeeeeeeeeeeeeee e 5
3.1 Signature NUMETIQUE XML APuoiiiiiiiii ettt 5
3.1.1 Exemple: controler [a signature XMLcccooooi oo 5
3.1.2 Exemple: NamespaceContext Implementation...........cccoooeeviieiiiiiiini e 7
3.2 CRL - Certificate Revocation List (liste des certificats de sécurité révoqués)............ 8
4 SOUT S it 9

2/9

f_Empfehlungen fur XML-Signaturprifung_v0.3.doc

e-dec

1 Introduction

Le présent document s'adresse aux clients de la douane utilisant e-dec et aux fournisseurs
de logiciels qui désirent vérifier la signature XML d'une décision de taxation électronique
(DTE).

Le document décrit la maniére dont les normes décrites dans la description des interfaces [1]

et dans le contrat de service [2] pour 'EdecReceiptService peuvent étre mises en ceuvre.

Le contrdle de la signature de documents XML a été spécifié par I'organisation W3C. La
spécification correspondante, appelée XML Signature Syntax and Processing (XMLDsig),
figure a I'adresse suivante:

http://www.w3.org/TR/xmldsig-core/.

Pour pouvoir effectuer le contrdle de la signature d'un document XML, la langue de
programmation correspondante ou le framework du standard W3C XML Signature Syntax
and Processing (XMLDsig) doit &tre mis en ceuvre.

La signature XML est insérée dans une enveloppe SOAP. L'ancrage de la signature dans
I'en-téte SOAP est effectué d'apres le standard de sécurité WS.

1.1 Remarque

Les exemples de codes mentionnés ont simplement pour but de montrer comment on
contrble la signature et la chaine de confiance du certificat dans une réponse DTE. Le code
n'a pas été optimisé en matiere de performance.

1.2 Références

Les documents suivants contiennent des informations sur la signature numérique dans e-
dec.

Réf. Titre Version

[1] Description des interfaces e-dec décision de taxation (description des 15
messages a l'entrée et a la sortie pour le service)

[2] Contrat de service EdecReceiptService (description des canaux de 1.3
communication — service Internet et courrier électronique)

f_Empfehlungen fur XML-Signaturprifung_v0.3.doc

3/9

http://www.w3.org/TR/xmldsig-core/

e-dec

2 Outils / frameworks

La liste suivante est une sélection d'outils et de frameworks que I'on peut utiliser pour le
contrble de la signature XML:

Outil / framework

Description

URL

Java SE 6

Dans Java SE 6, on a la possibilité
de vérifier avec les signatures API
XML fournies en méme temps.

http://java.sun.com/javase/

Apache XML Security

Dans Apache XML Security, on a
une bibliotheque a l'aide de laquelle
on peut vérifier les signatures XML
pour Java ou C++.

http://santuario.apache.org/

IAIK XML Security
Toolkit (XSECT)

Il s'agit d'une bibliothéque Java
commerciale pour le contréle de la
signature XML.

http://jce.iaik.tugraz.at

f_Empfehlungen fur XML-Signaturprifung_v0.3.doc

4/9

http://java.sun.com/javase/
http://santuario.apache.org/
http://jce.iaik.tugraz.at/

e-dec

3 Contrble de la signature XML avec Java

Le mieux est d'utiliser la signature numérique XML API (JSR 105), qui est spécifiée par le
Java Community Process (JCP). Voici la liste de quelques applications:

e Depuis Java 6, la signature numériqgue XML API est intégrée dans I'édition Java
standard.

e Apache XML Security est une application libre de la signature numérique XML API.

e L'IAIK XML Security Toolkit (XSECT) est une application commerciale de la signature
numérique XML API.

3.1 Signature numérique XML API

L'exemple suivant utilise l'interface standard de la signature numérique XML API;
I'application pour laquelle on se décide joue donc un grand réle. Ce n'est que lors de
I'enregistrement du fournisseur de sécurité gu'il existe quelques différences.

Remarque: dans cet exemple, la CRL (certification revocation list, liste des certificats de
sécurité révoqués) de la PKI (public key infrastructure, infrastructure a clé publiqgue) Admin
n'est pas encore contrblée.

3.1.1 Exemple: contrdler la signature XML

On commence par lire le document XML. Il est important que le DocumentBuilder soit
namespace aware.

InputStream is = XMLDsigClient.class.getResourceAsStream(‘'eVVResponse.xml™);

// create DocumentBuilderFactory which is Namespace aware
DocumentBui lderFactory builderFactory = DocumentBuilderFactory.newlnstance();
bui lderFactory.setNamespaceAware(true);

DocumentBuilder builder = builderFactory.newDocumentBuilder();
logger.info("'Is DocumentBuilder NamespaceAware: " + builder.isNamespaceAware());

// parse xml file (dumped soap request)
Document xmldoc = builder.parse(is);

XPath doit étre initialisé avec un NamespaceContext propre, afin que I'on puisse utiliser
I'espace nominal (Namespace) lors d'une interrogation XPath. Le NamespaceContextimpl
met en ceuvre le NamespaceContext de l'interface et doit étre établi par I'utilisateur. (Voir
exemple de NamespaceContext)

// create XPath object which has own NamespaceContext

XPath xpath = XPathFactory.newlnstance() .newXPath();

// with a custom NamespaceContext we can use Namespaces in our XPath query
NamespaceContext nsc = new NamespaceContextimpl();
Xpath.setNamespaceContext(nsc);

Avec XPath, on peut extraire le jeton X509 (X509 Token). Ce jeton X509 contient un
certificat X509 qui est encodé en Base64.

f_Empfehlungen fur XML-Signaturprifung_v0.3.doc

5/9

e-dec

// extract x509 Token --> xml element wsse:BinarySecurityToken
XPathExpression expr = xpath.compile(*'//wsse:Security/wsse:BinarySecurityToken™);
Node x509Node = (Node) expr.evaluate(xmldoc, XPathConstants.NODE);

Nous pouvons utiliser les données du jeton X509 pour établir un certificat X509. Cependant,
dans le certificat, il faut encore marquer le début par ----- BEGIN CERTIFICATE----- et la fin
par ----- END CERTIFICATE-----. Sinon, on ne peut pas lire le certificat.

// X509 Token is encoded in base64

String header = ""---—- BEGIN CERTIFICATE----—- \n";

String footer = "\n----- END CERTIFICATE----- "

// so we need a to add the certificate header and footer

// to the raw x509 data

byte[] x509data = (header + x509Node.getTextContent() + footer).getBytes();
ByteArraylnputStream bis = new ByteArraylnputStream(x509data);

// create certificate
CertificateFactory cf = CertificateFactory.getlnstance(*'X.509");

X509Certificate cert = (X509Certificate) cf.generateCertificate(bis);

Ici, le certificat X509 et la chaine de confiance sont vérifiés a l'aide du certificat CA. Si le
certificat ou la chaine de confiance ne sont pas valables, une exception est soulevée par le
CertPathValidator.validate(...).

// verify ca chain

// read in ca cert

is = XMLDsigClient.class.getResourceAsStream(*'adminca-cd-t01_BIT_CA certificate.crt™);
X509Certificate caCert = (X509Certificate) cf.generateCertificate(is);

// trusted ca cert
Set<TrustAnchor> trust = Collections.singleton(new TrustAnchor(caCert, null));
PKIXParameters params = new PKIXParameters(trust);

// Disable CRL checking since we are not supplying any CRLs
params.setRevocationEnabled(false);

// sets the time for which the validity of the certification
// path should be determined

params.setDate(new Date());

CertPath certPath = cf._generateCertPath(Collections.singletonList(cert));

CertPathValidator certPathValidator = CertPathValidator.getlnstance("PKIX™);

PKIXCertPathValidatorResult result = (PKIXCertPathValidatorResult) certPathValidator
.validate(certPath, params);

L'élément de signature XML est extrait au moyen de XPath, et un JSR 105 Provider est
initialisé. Ici, le provider est initialisé de facon explicite; cela est par exemple nécessaire si
I'on travaille avec Apache XML Security. Avec Java 6, un provider de signature numérique
XML API (JSR 105) est déja enregistre, et cette étape ne devrait pas étre nécessaire.

// extract xml element ds:Signature

expr = xpath.compile('//wsse:Security/ds:Signature™);

Node dsSignature = (Node) expr.evaluate(xmldoc, XPathConstants.NODE);
DOMValidateContext context = new DOMValidateContext(cert._getPublicKey(), dsSignature);

String providerName = System.getProperty(*'jsrl05Provider",
"org.-jcp.-xml.dsig.internal .dom.XMLDSigRI");

logger.info(*"jsr 105 provider: " + providerName);

XMLSignatureFactory factory = XMLSignatureFactory.getlnstance('DOM", (Provider) Class
.forName(providerName) .newlnstance());

XMLSignature signature = factory.unmarshalXMLSignature(context);

f_Empfehlungen fur XML-Signaturprifung_v0.3.doc

6/9

e-dec

La signature XML est controlée avec le DOMValidateContext. Celui-ci possede la clé
publique et une référence a I'élément de signature XML.

// Check core validation status
boolean coreValidity = signature.validate(context);

it (corevalidity == false) {

logger.error('Signature failed core validation!");
boolean sv = signature.getSignatureValue().validate(context);
logger.info('Signature validation status: " + sv);

// Check the validation status of each Reference
Iterator<Reference> i = signature.getSignedInfo() .getReferences().iterator();

for (int j = 0; i.hasNext(Q); j++) {
// signature was not valid so try to find out which refrence was invalid
Reference ref = i.next();
boolean refvalid = ref.validate(context);
String id = ref_getURI();
logger.info('Reference (" + j + ™) with URI [™ + id + "] validation status: "
+ refvalid);
}

else {
logger.info(’'Signature passed core validation!™);

}

3.1.2 Exemple: NamespaceContext Implementation

Ceci est I'application NamespaceContext qui connait tous les espaces hominaux
nécessaires de la réponse DTE. Le NamespaceContext est nécessaire afin que I'on puisse
effectuer les interrogations XPath avec les préfixes correspondants. On assure ainsi le
mapping entre les préfixes et les espaces nominaux.

public class NamespaceContextimpl implements NamespaceContext{

public static final String NS_URI_WSSE = "http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-wssecurity-secext-1.0.xsd";

public static final String PREFIX_WSSE = "wsse';

public static final String NS_URI_SOAP_ENV = "http://schemas.xmlsoap.org/soap/envelope/*;

public static final String PREFIX_SOAP_ENV = "soap";

public static final String NS_URI_XMLDSIG = "http://www.w3.0rg/2000/09/xmldsig#";

public static final String PREFIX_XMLDSIG = "ds";

public static final String NS_URI_EVV = “"http://www.e-
dec.ch/xml/schema/edecReceiptResponse/v1™;

public static final String PREFIX_EVV = "ewv";

private Map<String, String> value = new HashMap<String, String>();

public NamespaceContextimpl() {
value.put(PREFIX_EVV, NS_URI_EWV);
value.put(PREFIX_SOAP_ENV, NS_URI_SOAP_ENV);
value.put(PREFIX_WSSE, NS_URI_WSSE);
value.put(PREFIX_XMLDSIG, NS_URI_XMLDSIG);
3

public String getNamespaceURI(String prefix) {
return value.get(prefix);
3

public String getPrefix(String uri) {
throw new UnsupportedOperationException();
3

public lterator<String> getPrefixes(String uri) {
throw new UnsupportedOperationException();
3

}

f_Empfehlungen fur XML-Signaturprifung_v0.3.doc

719

e-dec

3.2 CRL - Certificate Revocation List (liste des certificats de
Securité revoqueés)

Dans cet exemple de code, la CRL n'est pas encore vérifiée. On obtient une liste des
certificats de sécurité révoqués en passant par la page Internet Admin PKI.

http://www.pki.admin.ch/crl.php

8/9

f_Empfehlungen fur XML-Signaturprifung_v0.3.doc

http://www.pki.admin.ch/crl.php

e-dec

4 Sources

Spécification XML Signature Syntax and Processing (XMLDsig)
http://www.w3.org/TR/xmldsig-core/

Signature numérique XML API (JSR 105)
http://jcp.org/en/jsr/detail ?id=105

Apache XML Security
http://santuario.apache.org/

IAIK XML Security Toolkit (XSECT)
http://jce.iaik.tugraz.at/sic/products/xml|_security/xsect

Article: XML Signature with JSR-105 in Java SE 6
http://today.java.net/pub/a/today/2006/11/21/xml-signature-with-jsr-105.html?page=1

Article: Using JSR 105 with JDK 1.4 or 1.5
http://weblogs.java.net/blog/mullan/archive/2008/02/using jsr 105 w_ 1.html

Présentation: XML Security and JSR 105-106
http://www.parleys.com/display/PARLEYS/XML+Security+and+JSR+105-106

9/9

f_Empfehlungen fur XML-Signaturprifung_v0.3.doc

http://www.w3.org/TR/xmldsig-core/
http://jcp.org/en/jsr/detail?id=105
http://santuario.apache.org/
http://jce.iaik.tugraz.at/sic/products/xml_security/xsect
http://today.java.net/pub/a/today/2006/11/21/xml-signature-with-jsr-105.html?page=1
http://weblogs.java.net/blog/mullan/archive/2008/02/using_jsr_105_w_1.html
http://www.parleys.com/display/PARLEYS/XML+Security+and+JSR+105-106

