

Eidgenössisches Finanzdepartement EFD

Bundesamt für Informatik und Telekommunikation BIT
Lösungszentrum

Web Service Entwicklung.doc

Christian Zeiler

e-dec Web Services

Best Practice WS-Stacks

Projektname: e-dec

Version: 0.4

Datum: 2010-06-01

Status in Arbeit in Prüfung genehmigt zur

Nutzung
   

Beteiligter Personenkreis

Autoren: Christian Zeiler, Patrick Schweizer

Genehmigung: PL

Benützer/Anwender: Projektgruppe, Zollkunden

zur Information/Kenntnis: Projektgruppe

Änderungskontrolle, Prüfung, Genehmigung

Wann Version Wer Beschreibung

22.10.08 0.1 cze Grundversion

22.01.09 0.1 mru C# Teil wurde hinzugefügt

29.01.09 0.3 pas AXIS2 Teil hinzugefügt

03.05.10 0.4 cze Kapitel 2.7 erstellt

Best Practice WS-Stacksl

Inhaltsverzeichnis

2/15

Web Service Entwicklung.doc

1 Einleitung ..3
1.1 Referenzen...3

2 JAX-WS..4
2.1 Links...4
2.2 Generierung der Stub Klassen...4
2.3 Endpoint Adresse definieren ..5
2.4 Http Header..5
2.5 Holder Objekte für Attachments ...5
2.6 Monitoring von Request/Response Daten ...6
2.7 Bekannte Probleme..6
2.7.1 Signaturprüfung mit JAX-WS Handler Implementation6

3 CXF...9
3.1 Links...9
3.2 Generierung der Stub Klassen...9

4 Apache AXIS2 ...10
4.1 Links...10
4.2 Http Header..10

5 C# ...11
5.1 Links...11
5.2 Marshalling / Unmarshalling in C# ...11
5.3 SOAP Request versenden ...11
5.4 SOAP Request empfangen..12
5.5 SOAP Reuqest und Attachment extrahieren..14
5.6 Client Zertifikat ...14

6 Tools ..15
6.1 Monitoring ..15

Best Practice WS-Stacksl

3/15

1 Einleitung

In diesem Dokument werden die Erfahrungen und Best Practices mit den verschiedenen
Web Service Stacks dokumentiert. Die Erfahrungen pro Web Service Stack werden jeweils in
einem eigenen Kapitel aufgeführt.

1.1 Referenzen

Die folgenden Quellen werden im Dokument referenziert oder haben als Grundlage gedient:

Ref Titel Version

[1] Eclipse Projekt JAX-WS Client: edec_wsclient_jaxws -

[2] Viusal Studio Express 2008 Projekt: edec_wsclient_csharp -

Web Service Entwicklung.doc

Best Practice WS-Stacksl

4/15

2 JAX-WS

Bei JAX-WS handelt es sich um eine Spezifikation die im JSR 224 beschrieben wird. Als
Implementierung des JSR 224 wird die Referenzimplementierung von Sun verwendet. Die
beschriebenen Erfahrungen beziehen sich auf die Version 2.1.3 der Referenzimplementati-
on. Der Sourcecode stammt aus dem Eclipse Projekt für JAX-WS [1].

2.1 Links

Die folgenden Links enthalten Informationen zu JAX-WS:

 JSR 224 - http://jcp.org/en/jsr/detail?id=224

 JAX-WS RI - https://jax-ws.dev.java.net/

 JAX-WS UserGuide - https://jax-ws.dev.java.net/guide/

2.2 Generierung der Stub Klassen

Beim Generieren der Stub Klassen müssen die extension von JAX-WS verwendet werden
damit die Klassen generiert werden. Die Extension können via Konsole oder über den Ant-
Task definiert werden.

<target name="create.stub" depends="clean">

 <wsimport

 sourcedestdir="${prod.source.dir}"

 destdir="${build.classes.dir}"

 debug="true"

 verbose="true"

 extension="true"

 wsdl="${wsdl.dir}/${wsdl.file}.wsdl"/>

</target>

Als Alternative zu den JAX-WS Extension können auch die Namen der Response-Messages
umbenannt werden. Details dazu befinden sich im Kapitel 3.2.

Web Service Entwicklung.doc

http://jcp.org/en/jsr/detail?id=224
https://jax-ws.dev.java.net/
https://jax-ws.dev.java.net/guide/

Best Practice WS-Stacksl

5/15

2.3 Endpoint Adresse definieren

Der Endpoint für den Web Service kann über das BindingProvider Interface gesetzt werden.

((BindingProvider)
port).getRequestContext().put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 "http://<HOST>/<SERVICE-URL>");

2.4 Http Header

Http Header können über das BindingProvider Interface gesetzt werden. Dafür muss eine
Map mit einer Liste von Werten erzeugt werden, die anschliessend in den RequestContext
eingefügt werden.

Map<String, List<String>> headers = new HashMap<String, List<String>>();

List<String> values = new ArrayList<String>();

values.add("<KEY>");

headers.put("<VALUE>", values);

((BindingProvider)
port).getRequestContext().put(MessageContext.HTTP_REQUEST_HEADERS, head-
ers);

2.5 Holder Objekte für Attachments

Die Daten der Holder Objekte werden mit dem Encoding BASE64 zurückgeliefert und müs-
sen vor dem Schreiben auf die Festplatte konvertiert werden.

Für die Konvertierung kann die Klasse org.apache.commons.codec.binary.Base64 verwen-
det werden. Die Klasse ist Teil des Projekts Apache Commons Codec (
http://commons.apache.org/codec/).

out = new FileOutputStream(file);

Base64 decoder = new Base64();

byte[] decoded_data = decoder.decode(data);

out.write(decoded_data);

out.flush();

out.close();

Web Service Entwicklung.doc

http://commons.apache.org/codec/

Best Practice WS-Stacksl

2.6

6/15

Web Service Entwicklung.doc

 Monitoring von Request/Response Daten

JAX-WS bietet die Möglichkeit über eine Systemparameter die Ausgabe der Re-
quest/Response Daten in der Konsole zu steuern.

com.sun.xml.ws.transport.http.client.HttpTransportPipe.dump=true

Als Alternative können auch die beiden Tools TCP Monitor oder WSMonitor verwendet wer-
den. Die beiden Tools werden als Proxy zwischen dem Client und dem Server geschaltet.

2.7 Bekannte Probleme

2.7.1 Signaturprüfung mit JAX-WS Handler Implementation

In der aktuellen Version wird die Payload des SOAP-Responses inkl. dem Body-Tag signiert.
Bei der Verwendung von JAX-WS Handlern bei der Überprüfung der Signatur gibt es Prob-
leme weil der DOM-Tree von der Standard-Implementation verändert wird.

2.7.1.1 Vorgehen Fehleranalyse

Die folgenden Kapitel beschreiben das Vorgehen bei der Fehleranalyse.

HTTP-Dump erstellen

Mit dem Parameter aus Kapitel 2.6 kann ein Dump des HTTP-Responses erstellt werden.
Dieser Dump enthält die Daten wie sie über das Protokoll geliefert werden.

Zeilenumbruch und zwei Leerschläge zw. <SOAP-ENV:Body..> und
<ns1:receiptRequestResponse ..>

<SOAP-ENV:Body xmlns:wsu="http://docs.oasis-open ...>
 <ns1:receiptRequestResponse xmlns:ns1="http://www.e-
dec.ch/xml/schema/edecReceiptResponse/v1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" schemaVersion="0.6" xsi:schemaLocation="http://www.e-
dec.ch/xml/schema/edecReceiptResponse/v1
http://www.ezv.admin.ch/pdf_linker.php?doc=edecReceiptResponse_v_0_6">
 <requestorTraderIdentificationNumber xmlns="http://www.e-
dec.ch/xml/schema/edecReceiptResponse/v1">1000029</requestorTraderIdentificationNumber>

Zeilenumbruch und ein Leerschlag zw. </ns1:receiptRequestResponse> und </SOAP-
ENV:Body>

 </ns1:receiptRequestResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

DOM-Tree Dump erstellen

Mit dem folgenden Code kann ein Dump des DOM-Trees erstellt werden.

SOAPEnvelope envelope = smc.getMessage().getSOAPPart().getEnvelope();
 try{
 // Set up the output transformer
 TransformerFactory transfac = TransformerFactory.newInstance();
 Transformer trans = transfac.newTransformer();
 trans.setOutputProperty(OutputKeys.OMIT_XML_DECLARATION, "no");
 trans.setOutputProperty(OutputKeys.ENCODING, "UTF-8");
 trans.setOutputProperty(OutputKeys.INDENT, "no");
 // Print the DOM node
 StringWriter sw = new StringWriter();
 StreamResult result = new StreamResult(sw);

https://tcpmon.dev.java.net/
https://wsmonitor.dev.java.net/

Best Practice WS-Stacksl

 DOMSource source = new DOMSource(envelope);
 trans.transform(source, result);
 String xmlString = sw.toString();
 System.out.println("DOM Begin");
 System.out.println("---");
 System.out.print(xmlString);
 System.out.println("---");
 System.out.println("DOM End");
 }
 catch (TransformerException e){
 e.printStackTrace();
 }

Debugdetails der Variablen envelope:

Das firstChild ist der Header (rot). Sein nextSibling ist der Body (rot). Das firstChild des Body
ist der receiptRequestResponse (grün). Es fehlt eine TextNode mit dem Zeilenumbruch und
den beiden Leerschlägen. Das firstChild von receiptRequestResponse ist eine TextNode mit
einem Zeilenumbruch und drei Leerschlägen (blau) - was auch korrekt ist. Im Envelope wer-
den beim Header und Body immer alle Leerschläge und Zeilenumbrüche entfernt bis zum
ersten SubElement. Unterhalb dieser SubElemente sind alle Leerschläge und Zeilenumbrü-
che vorhanden.

7/15

Web Service Entwicklung.doc

Best Practice WS-Stacksl

DOM-Ausgaben auf der Konsole:

8/15

Web Service Entwicklung.doc

Bei der Ausgabe des DOM’s werden keine Leerschläge oder Zeilenumbrüche zwischen Bo-
dy und receiptRequestResponse eingefügt.

<SOAP-ENV:Body xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd" wsu:Id="id-16340840"><ns1:receiptRequestResponse xmlns:ns1="http://www.e-
dec.ch/xml/schema/edecReceiptResponse/v1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" schemaVersion="0.6" xsi:schemaLocation="http://www.e-
dec.ch/xml/schema/edecReceiptResponse/v1
http://www.ezv.admin.ch/pdf_linker.php?doc=edecReceiptResponse_v_0_6">
 <requestorTraderIdentificationNumber xmlns="http://www.e-
dec.ch/xml/schema/edecReceiptResponse/v1">1000029</requestorTraderIdentificationNumber>

2.7.1.2 Fazit

Das XML aus dem HHTP-Dump kann fehlerfrei validiert werden. Der Zugriff über den Enve-
lope gibt einen bereits modifizierten DOM zurück. Mit diesem Ansatz ist es nicht möglich den
Original Response (siehe http-Dump) auszulesen. Die Validierung des DOM-Outputs schlägt
fehl.

2.7.1.3 Alternative Implementation:

Als Alternative zu JAX-WS und Handler könnte die Abfrage via createDispatch() des Servi-
ces durchgeführt werden – Details siehe:

 http://blogs.sun.com/artf/entry/operating_at_the_xml_message

Diese Variante wurde noch nicht getestet

http://blogs.sun.com/artf/entry/operating_at_the_xml_message

Best Practice WS-Stacksl

9/15

3 CXF

Bei CXF handelt es sich um einen Web Service Stack von Apache.

3.1 Links

Die folgenden Links enthalten Informationen zu CXF:

 Projekt Webseite - http://cxf.apache.org/

3.2 Generierung der Stub Klassen

Damit die Klassen mit CXF generiert werden können müssen bei den „multipart“-
Operationen die Namen der Antwort-Parts in den Messages und Bindings umbenannt wer-
den. (z.B. parameters  result).

<message name="goodsDeclarationsResponse">

 <part name="result" element="edecResponse:goodsDeclarationsResponse"/>

 …

</message>

…

<binding name="EdecBinding" type="tns:EdecPortType">

…

<output>

 <mime:multipartRelated>

 <mime:part>

 <soap:body use="literal" parts="result"/>

 </mime:part>

 …

 </mime:multipartRelated>

…

</output>

Web Service Entwicklung.doc

http://cxf.apache.org/

Best Practice WS-Stacksl

10/15

4 Apache AXIS2

Bei AXIS2 handelt es sich um einen Web Service Stack von Apache.

4.1 Links

Die folgenden Links enthalten Informationen zu AXIS2:

 Projekt Webseite
http://ws.apache.org/axis2/

 SOAP with Attachments mit apache AXIS2:
http://thilinag.blogspot.com/2007/05/using-soap-with-attachments-in-axis2.html
http://wso2.org/library/1148

4.2 Http Header

Http Header können über die Options Klasse gesetzt werden. Dafür muss eine ArrayList an-
gelegt werden, welcher anschliessend Objekte vom Typ Header hinzugefügt werden können.

EdecServiceStub stub = new EdecServiceStub(EDEC_SERVICE_URL);
Options options = stub._getServiceClient().getOptions();

List http_headers = new ArrayList();
http_headers.add(new Header("SSL_CLIENT_CERT_S_DN_CN", "Firma xy ABCDEF"));
options.setProperty(HTTPConstants.HTTP_HEADERS, http_headers);

Web Service Entwicklung.doc

http://ws.apache.org/axis2/
http://thilinag.blogspot.com/2007/05/using-soap-with-attachments-in-axis2.html

Best Practice WS-Stacksl

11/15

5 C#

Mit C# gab es einige Problem, da weder mit WCF (Svcutil.exe) oder mit dem Tool Wsdl.exe
einen brauchbaren Web Service Client Stub generiert werden konnte. Auch durch das modi-
fizieren des WSDL (entfernen der SwA spezifischen Einträge) konnte auch kein brauchbaren
Stub erstellt werden.

Eines der Probleme ist das, dass .Net Framework kein SwA (SOAP Messages with Attach-
ments) unterstützt.

Deshalb wurde ein C# Client erstellt der selber ein SOAP Request zusammenstellt und mit
dem MIME Parser SharpMimeTools die Attachments extrahiert.

Nachfolgend sind die wichtigsten Schritte dokumentiert. Eine Beispiel Applikation wurde mit
C# Visual Studio Express 2008 erstellt.

5.1 Links

Die folgenden Links enthalten zusätzliche Informationen:

 .Net Framework - http://www.microsoft.de/net

 Visual Studio Express – http://www.microsoft.com/Express/

 SharpMimeTools - http://anmar.eu.org/projects/sharpmimetools/

5.2 Marshalling / Unmarshalling in C#

Mit dem Programm Xsd.exe kann man aus den Schemas C# Klassen generieren. Die erstell-
ten C# Klassen können dann mit dem XmlSerializer serialisiert oder deserialisiert werden.

Xsd.exe edec_v_2_0.xsd edecSelectionAndTransit_v_1_0.xsd
 edecResponse_v_2_0.xsd /c /o:c:\out

Durch den Parameter /o wird angegeben wohin die generierten Klassen kopiert werden sol-
len.

5.3 SOAP Request versenden

Mit dem XmlSerializer kann man nun die Objekte in XML deserialisieren. Danach muss man
nur noch die SOAP Spezifischen Elemente (SOAP Envelope, SOAP Body und SOAP Hea-
der) hinzufügen und mittels der Klasse HttpWebRequest an die entsprechenden Endpoint
URL versenden.

FileStream fs = new FileStream(“C:\data\export.xml”, FileMode.Open);

XmlSerializer serializer = new XmlSerializer(typeof(goodsDeclarations));

goodsDeclarations declarations = (goodsDeclarations)
 serializerReq.Deserialize(fs);

Web Service Entwicklung.doc

http://www.microsoft.de/net
http://www.microsoft.com/Express/
http://anmar.eu.org/projects/sharpmimetools/

Best Practice WS-Stacksl

12/15

// here you could modify goodsDeclarations

XmlWriterSettings writerSettings = new XmlWriterSettings();

writerSettings.OmitXmlDeclaration = true;

StringWriter stringWriter = new StringWriter();

using (XmlWriter xmlWriter = XmlWriter.Create(stringWriter,
 writerSettings))

 {

 serializerReq.Serialize(xmlWriter, declarations);
 }

string xmlText = stringWriter.ToString();

HttpWebRequest req = (HttpWebRequest)WebRequest.Create(url);

req.ContentType = @"text/xml;charset=""utf-8""";

req.Accept = "text.xml";

req.Method = "POST";

// create soap message (with SOAP Header, Body and Envelope)

String msg = START_MSG + xmlText + END_MSG;

byte[] reqBytes = System.Text.Encoding.UTF8.GetBytes(msg);

req.ContentLength = reqBytes.Length;

Stream reqStream = req.GetRequestStream();

// send soap request

reqStream.Write(reqBytes, 0, reqBytes.Length);

reqStream.Close();

5.4 SOAP Request empfangen

Das Problem beim Request ist, dass wir eine MIME Multipart Response erhalten.

Mit der Library SharpMimeTools kann man den Response Stream einer HttpWebResponse
parsen. Der Response Stream sieht wie folgt aus.

------=_Part_118_24290992.1232636587322

Web Service Entwicklung.doc

Best Practice WS-Stacksl

13/15

Content-Type: text/xml

Content-Description: e-dec_Export_edecResponse_524536839_09CHEE000000507663_1_1000054_1

Content-ID: <parameters=-15248ca1:11efdd317b9:-7cc2_0@edec.ezv.admin.ch>

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"> <SOAP-ENV:Header/>

 <SOAP-ENV:Body>

</…>

------=_Part_118_24290992.1232636587322

Content-Type: application/pdf

Content-Transfer-Encoding: base64

Content-Description: e-dec_Export_AL_524536839_09CHEE000000507663_1_1000054_1

Content-ID: <e-dec_Export_AL=-15248ca1:11efdd317b9:-7cc3_1@edec.ezv.admin.ch>

JVBERi0xLjQKJeLjz9MKOCAwIG9iaiA8PC9GaWx0ZXIvRmxhdGVEZWNvZGUvTGVuZ3RoIDgzOT4+

…

------=_Part_118_24290992.1232636587322--

Damit der Response Stream der HttpWebResponse Klasse MIME konform ist, muss man
noch einige MIME Headers hinzufügen (Date, Content-Type und Content-Length). Diese
erhält man aus den HTTP Header der HttpWebResponse.

Date: Thu, 22 Jan 2009 15:03:04 GMT

Content-Type: multipart/related; boundary="----=_Part_118_24290992.1232636587322"

Content-Length: 7732

Anschliessend kann man den Request Stream mit der Klasse SharpMessage, aus der Libra-
ry, MimeSharpTools parsen.

HttpWebResponse res = …;
MemoryStream httpStream = …;
MemoryStream mimeStream = …;

Encoding utf8 = Encoding.UTF8;

TextReader readerReq = new StreamReader(httpStream, utf8);
TextWriter writer = new StreamWriter(mimeStream, utf8);

// create a correct mime stream form the HttpResponseStream
// add http headers which were required for a correct mime
// format
writer.WriteLine("Date: " + res.GetResponseHeader("Date"));
writer.WriteLine("Content-Type: " + res.ContentType);
writer.WriteLine("Content-Length: " + res.ContentLength);
writer.WriteLine(Environment.NewLine);

// copy rest of the stream
while (true)
{
 string line = readerReq.ReadLine();
 if (line == null)

Web Service Entwicklung.doc

Best Practice WS-Stacksl

 {

14/15

Web Service Entwicklung.doc

 break;

 }
 writer.WriteLine(line);
}
writer.Flush();
mimeStream.Position = 0;
// parse the stream for mime attachments
SharpMessage message = new SharpMessage(mimeStream,
 SharpDecodeOptions.Default | SharpDecodeOptions.DecodeTnef |
 SharpDecodeOptions.UuDecode);

5.5 SOAP Reuqest und Attachment extrahieren

Auf Sämtliche Daten (SOAP Response und Attachments) kann man mittels der Klasse
SharpMessage zugreifen.

SharpMessage message = …;

if (message.Attachments != null)
{
 foreach (attachment in message.Attachments)
 {
 Stream stream = attachment.Stream;
 …
 }

5.6 Client Zertifikat

Unter der folgenden Microsoft Support Seite wird erklärt, wie man einem WebRequest ein
Client Zertifikat mitgeben kann.

http://support.microsoft.com/kb/895971

http://support.microsoft.com/kb/895971

Best Practice WS-Stacksl

15/15

Web Service Entwicklung.doc

6 Tools

6.1 Monitoring

Name Link

TCP Monitor https://tcpmon.dev.java.net/

WSMonitor https://wsmonitor.dev.java.net/

https://tcpmon.dev.java.net/
https://wsmonitor.dev.java.net/

