O

Schweizerische Eidgenossenschaft
Confédération suisse
Confederazione Svizzera
Confederaziun svizra

Christian Zeiler

Eidgendssisches Finanzdepartement EFD

Bundesamt fur Informatik und Telekommunikation BIT

Lésungszentrum

e-dec Web Services

Best Practice WS-Stacks

Projektname:

Version:

Datum:

Status

e-dec

0.4

2010-06-01

in Arbeit in Prifung
(] (]

genehmigt zur

Nutzung
M

Beteiligter Personenkreis

Autoren: Christian Zeiler, Patrick Schweizer
Genehmigung: PL

Benitzer/Anwender: Projektgruppe, Zollkunden

zur Information/Kenntnis: Projektgruppe

Anderungskontrolle, Prifung, Genehmigung

Wann Version | Wer Beschreibung

22.10.08 0.1 cze Grundversion

22.01.09 0.1 mru C# Teil wurde hinzugeflgt
29.01.09 0.3 pas AXIS2 Teil hinzugefiigt
03.05.10 0.4 cze Kapitel 2.7 erstellt

Web Service Entwicklung.doc

Best Practice WS-Stacksl

Inhaltsverzeichnis

1] L= A0 o SRS 3
1.1 REIEIENZEN . .. 3
2 B L SRR UOPUPPPPRRRR 4
2.1]] RS 4
2.2 Generierung der Stub KIASSENuuiiiiiiii e 4
2.3 Endpoint Adresse defiNierenoocciiieeiiiii e 5
2.4 [100 0T == Vo = 5
2.5 Holder Objekte flr AttACNMENTScooiiiiiiiiiiiecee e 5
2.6 Monitoring von Request/Response Datenccoceuvviieiiiieciieeeiiee et 6
2.7 BeKannte ProbIEMI.......oooi i 6
2.7.1 Signaturprifung mit JAX-WS Handler Implementationcccccceeeieniiiiiinnne. 6
3 (O SRRSO PEPPRN 9
3.1 T T PP PP PPPPPPPPN 9
3.2 Generierung der Stub KIasSSeNn.........coovv i 9
4 APACNE AXISZ .o 10
4.1 LN K S e 10
4.2 L LT O TN o 1= = o = 10
5 % TP U TP PPPPPPPPRPPRN 11
51 LIRS e 11
5.2 Marshalling / Unmarshalling in C# ... 11
5.3 SOAP REQUEST VEISENUEN ...coeeiiiiiiiiiieiie ittt e e ea e e 11
54 SOAP ReqUESE EMPTANGENcciiiiiiiiieie e e e 12
5.5 SOAP Reugest und Attachment extrahieren.............cccceevvveii e e, 14
5.6 Client Zertifikat ... 14
6 TOO0IS i 15
6.1 1Y/ 11 (o 1T 15

Web Service Entwicklung.doc

2/15

Best Practice WS-Stacksl

1 Einleitung

In diesem Dokument werden die Erfahrungen und Best Practices mit den verschiedenen

Web Service Stacks dokumentiert. Die Erfahrungen pro Web Service Stack werden jeweils in

einem eigenen Kapitel aufgefihrt.

1.1 Referenzen

Die folgenden Quellen werden im Dokument referenziert oder haben als Grundlage gedient:

Ref | Titel

Version

[1] Eclipse Projekt JAX-WS Client: edec_wsclient_jaxws

[2] | Viusal Studio Express 2008 Projekt: edec_wsclient_csharp

Web Service Entwicklung.doc

3/15

Best Practice WS-Stacksl

2 JAX-WS

Bei JAX-WS handelt es sich um eine Spezifikation die im JSR 224 beschrieben wird. Als
Implementierung des JSR 224 wird die Referenzimplementierung von Sun verwendet. Die
beschriebenen Erfahrungen beziehen sich auf die Version 2.1.3 der Referenzimplementati-
on. Der Sourcecode stammt aus dem Eclipse Projekt fur JAX-WS [1].

2.1 Links

Die folgenden Links enthalten Informationen zu JAX-WS:

e JSR 224 - http://icp.org/en/jsr/detail?id=224

e JAX-WS RI - https://jax-ws.dev.java.net/

e JAX-WS UserGuide - https://jax-ws.dev.java.net/quide/

2.2 Generierung der Stub Klassen

Beim Generieren der Stub Klassen missen die extension von JAX-WS verwendet werden
damit die Klassen generiert werden. Die Extension kdnnen via Konsole oder tber den Ant-
Task definiert werden.

<target name="'create.stub" depends="‘clean'>
<wsimport

sourcedestdir="${prod.source.dir}"
destdir="${build.classes._dir}"
debug=""true"
verbose=""true"
extension=""true"
wsdl="${wsdl .dir}/${wsdl.File}._ wsdl"/>

</target>

Als Alternative zu den JAX-WS Extension kdnnen auch die Namen der Response-Messages

umbenannt werden. Details dazu befinden sich im Kapitel 3.2.

Web Service Entwicklung.doc

4/15

http://jcp.org/en/jsr/detail?id=224
https://jax-ws.dev.java.net/
https://jax-ws.dev.java.net/guide/

Best Practice WS-Stacksl

2.3 Endpoint Adresse definieren

Der Endpoint fir den Web Service kann Uber das BindingProvider Interface gesetzt werden.

((BindingProvider)
port) .getRequestContext() .put(BindingProvider . ENDPOINT ADDRESS PROPERTY,
"http://<HOST>/<SERVICE-URL>"");

2.4 Http Header

Http Header kénnen Uber das BindingProvider Interface gesetzt werden. Daflr muss eine
Map mit einer Liste von Werten erzeugt werden, die anschliessend in den RequestContext
eingefligt werden.

Map<String, List<String>> headers = new HashMap<String, List<String>>();
List<String> values = new ArrayList<String>(Q);

values.add("'<KEY>"");

headers.put("'<VALUE>", values);

((BindingProvider)

port) .getRequestContext() .put(MessageContext.HTTP_REQUEST HEADERS, head-
ers);

2.5 Holder Objekte fir Attachments

Die Daten der Holder Objekte werden mit dem Encoding BASE64 zuriickgeliefert und mis-
sen vor dem Schreiben auf die Festplatte konvertiert werden.

Fur die Konvertierung kann die Klasse org.apache.commons.codec.binary.Base64 verwen-
det werden. Die Klasse ist Teil des Projekts Apache Commons Codec (
http://commons.apache.org/codec/).

out = new FileOutputStream(file);

Base64 decoder = new Base64();

byte[] decoded _data = decoder.decode(data);
out.write(decoded_data);

out.flushQ;

out.close();

5/15

Web Service Entwicklung.doc

http://commons.apache.org/codec/

Best Practice WS-Stacksl
2.6 Monitoring von Request/Response Daten

JAX-WS bietet die Mdglichkeit Uber eine Systemparameter die Ausgabe der Re-
gquest/Response Daten in der Konsole zu steuern.

com.sun.xml.ws.transport.http.client.HttpTransportPipe.dump=true

Als Alternative kdnnen auch die beiden Tools TCP Monitor oder WSMonitor verwendet wer-

den. Die beiden Tools werden als Proxy zwischen dem Client und dem Server geschaltet.

2.7 Bekannte Probleme

2.7.1 Signaturprifung mit JAX-WS Handler Implementation

In der aktuellen Version wird die Payload des SOAP-Responses inkl. dem Body-Tag signiert.
Bei der Verwendung von JAX-WS Handlern bei der Uberpriifung der Signatur gibt es Prob-

leme weil der DOM-Tree von der Standard-Implementation verandert wird.

2.7.1.1 Vorgehen Fehleranalyse
Die folgenden Kapitel beschreiben das Vorgehen bei der Fehleranalyse.

HTTP-Dump erstellen

Mit dem Parameter aus Kapitel 2.6 kann ein Dump des HTTP-Responses erstellt werden.
Dieser Dump enthélt die Daten wie sie Uber das Protokoll geliefert werden.

Zeilenumbruch und zwei Leerschlage zw. <SOAP-ENV:Body..> und
<nsl:receiptRequestResponse ..>

<SOAP-ENV:Body xmlIns:wsu="http://docs.oasis-open ...>

<nsl:receiptRequestResponse xmlns:nsl="http://www.e-
dec.ch/xml/schema/edecReceiptResponse/v1” xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" schemaVersion="0.6" xsi:schemalLocation="http://www.e-
dec.ch/xml/schema/edecReceiptResponse/vl
http://www.ezv.admin.ch/pdf_linker.php?doc=edecReceiptResponse_v_0_6'>

<requestorTraderldentificationNumber xmlns="http://www.e-

dec.ch/xml/schema/edecReceiptResponse/v1'>1000029</requestorTraderldentificationNumber>

Zeilenumbruch und ein Leerschlag zw. </nsl:receiptRequestResponse> und </SOAP-
ENV:Body>

</nsl:receiptRequestResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

DOM-Tree Dump erstellen

Mit dem folgenden Code kann ein Dump des DOM-Trees erstellt werden.

SOAPEnvelope envelope = smc.getMessage() -getSOAPPart() .getEnvelope();
try{

// Set up the output transformer
TransformerFactory transfac = TransformerFactory.newlnstance();
Transformer trans = transfac.newTransformer();
trans.setOutputProperty(OutputKeys.OMIT_XML_DECLARATION, *no™);
trans.setOutputProperty(OutputKeys.ENCODING, *"UTF-8");
trans.setOutputProperty(OutputKeys. INDENT, *‘no™);
// Print the DOM node
StringWriter sw = new StringWriter();
StreamResult result = new StreamResult(sw);

Web Service Entwicklung.doc

6/15

https://tcpmon.dev.java.net/
https://wsmonitor.dev.java.net/

Best Practice WS-Stacksl

DOMSource source = new DOMSource(envelope);

trans.transform(source, result);
String xmlString = sw.toString();
System.out.printIn(*'DOM Begin™);

System.out._printin(”

System.out.print(xmlString);

System.out.printin(”

System.out.printIn(*'DOM End");

catch (TransformerException e){

e.printStackTrace();
¥

Debugdetails der Variablen envelope:

Das firstChild ist der Header (rot). Sein nextSibling ist der Body (rot). Das firstChild des Body
ist der receiptRequestResponse (griin). Es fehlt eine TextNode mit dem Zeilenumbruch und
den beiden Leerschlagen. Das firstChild von receiptRequestResponse ist eine TextNode mit
einem Zeilenumbruch und drei Leerschlagen (blau) - was auch korrekt ist. Im Envelope wer-
den beim Header und Body immer alle Leerschlage und Zeilenumbrtche entfernt bis zum
ersten SubElement. Unterhalb dieser SubElemente sind alle Leerschlage und Zeilenumbri-

che vorhanden.

. o]

attributes
element(QMName
encodingStyleAttribute
fBufferStr

firstChild

flags

fMNodelListCache
localMame

name

namespacelR]
nextSibling
3 Attrbutes

o

< elementQMName

@ encodingStyleAttribute
= fault
&
o

SR RErRECRE R CRE] L

| S

fBufferStr

firstChild
- attributes

.o element(QMName

- B encodingStyleAttribute
& fBufferStr

¥ x|
. ¢ data

fBufferStr

flags

nextSibling

ownerMode

LERE L

. & previousSibling
flags
fModelistCache
localMame
narme
namespacelRI
nextSibling
ownerDecument
ownerMode
previcusSibling
& type

flags
fNodelistCache
localMame

LeRL LR cRE L PR R TR

name
namespacelRI
nextSibling
ownerDocument

¢ ¢ @ |0 | |¢

Web Service Entwicklung.doc

Headerl 1Impl (id=112)
null
QMame (id=116)

ElementlmplSAttributeManager (id=117)

null

Elementlmpl (id=118)
26

null

"Header" (id=119)

| "SOAP-ENV:Header" (id=120) |

“http://schemas.xmlsoap.org/soap/envelope/” (id=121)

Bodyl_1lmpl (id=122)
AttributeMap (id=139)
QMame (id=140)

ElementimplSAttributeManager (id=141)

null

null

ElementImpl (id=142)
AttributeMap (id=145)
QMame (id=146)

ElementlmplSAttributeManager (id=147)

null

Textlmpl (id=148
null

24

Elementimpl (id=160)
Elementlmpl (id=142)
Textlmpl (id=161)

24

null

"receiptRequestResponse” (id=153)

"nslireceiptRequestResponse” (id=155)

null

SOAPDocumentlmpl (id=126)

Bodyl 1Impl (id=1232)
Elementimpl (id=142)
null

8

null

"Body" (id=143)

Pl W, e-dec.ch/xml/schema/edecReceiptResponse/vl” (id=157)

"SOAP-ENV:Body" (id=144)

null
SOAPDocumentlmpl (id=126)

p://schemas.xmlsoap.org/soap/envelope/™ (id=121)

7/15

Best Practice WS-Stacksl
DOM-Ausgaben auf der Konsole:

Bei der Ausgabe des DOM'’s werden keine Leerschlage oder Zeilenumbriiche zwischen Bo-
dy und receiptRequestResponse eingeflgt.

<SOAP-ENV:Body xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-
utility-1.0_xsd" wsu:ld="i1d-16340840""><nsl:receiptRequestResponse xmlns:nsl="http://www.e-
dec.ch/xml/schema/edecReceiptResponse/v1l"” xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance' schemaVersion="0.6" xsi:schemalLocation="http://www.e-
dec.ch/xml/schema/edecReceiptResponse/vl
http://www.ezv.admin.ch/pdf_linker.php?doc=edecReceiptResponse_v_0_6'>
<requestorTraderldentificationNumber xmlns="http://www.e-
dec.ch/xml/schema/edecReceiptResponse/v1'>1000029</requestorTraderldentificationNumber>

2.7.1.2 Fazit

Das XML aus dem HHTP-Dump kann fehlerfrei validiert werden. Der Zugriff Gber den Enve-
lope gibt einen bereits modifizierten DOM zurtick. Mit diesem Ansatz ist es nicht moglich den
Original Response (siehe http-Dump) auszulesen. Die Validierung des DOM-Outputs schlagt
fehl.

2.7.1.3 Alternative Implementation:

Als Alternative zu JAX-WS und Handler kdnnte die Abfrage via createDispatch() des Servi-
ces durchgefihrt werden — Details siehe:

e http://blogs.sun.com/artf/entry/operating_at the xml message

Diese Variante wurde noch nicht getestet

8/15

Web Service Entwicklung.doc

http://blogs.sun.com/artf/entry/operating_at_the_xml_message

Best Practice WS-Stacksl

3 CXF

Bei CXF handelt es sich um einen Web Service Stack von Apache.

3.1 Links

Die folgenden Links enthalten Informationen zu CXF:

e Projekt Webseite - http://cxf.apache.org/

3.2 Generierung der Stub Klassen

Damit die Klassen mit CXF generiert werden kénnen mussen bei den ,multipart*-
Operationen die Namen der Antwort-Parts in den Messages und Bindings umbenannt wer-
den. (z.B. parameters - result).

<message name="‘goodsDeclarationsResponse''>

<part name="result"” element="edecResponse:goodsDeclarationsResponse"/>

</message>

<binding name="EdecBinding" type=""tns:EdecPortType'>

<output>

<mime:multipartRelated>

<mime:part>

<soap:body use="literal" parts="result'/>

</mime:part>

</mime:multipartRelated>

</output>

Web Service Entwicklung.doc

9/15

http://cxf.apache.org/

Best Practice WS-Stacksl

4 Apache AXIS2

Bei AXIS2 handelt es sich um einen Web Service Stack von Apache.

4.1 Links

Die folgenden Links enthalten Informationen zu AXIS2:

e Projekt Webseite
http://ws.apache.org/axis2/

e SOAP with Attachments mit apache AXIS2:
http://thilinag.blogspot.com/2007/05/using-soap-with-attachments-in-axis2.html
http://wso2.org/library/1148

4.2 Http Header

Http Header kdnnen tber die Options Klasse gesetzt werden. Dafiir muss eine ArrayList an-

gelegt werden, welcher anschliessend Objekte vom Typ Header hinzugefligt werden kdnnen.

EdecServiceStub stub = new EdecServiceStub(EDEC_SERVICE_URL);
Options options = stub._getServiceClient().getOptions();

List http _headers = new ArrayList();
http_headers.add(new Header("'SSL_CLIENT_CERT_S DN _CN", "Firma xy ABCDEF'));
options.setProperty(HTTPConstants.HTTP_HEADERS, http headers);

Web Service Entwicklung.doc

10/15

http://ws.apache.org/axis2/
http://thilinag.blogspot.com/2007/05/using-soap-with-attachments-in-axis2.html

Best Practice WS-Stacksl

5 C#

Mit C# gab es einige Problem, da weder mit WCF (Svcutil.exe) oder mit dem Tool Wsdl.exe
einen brauchbaren Web Service Client Stub generiert werden konnte. Auch durch das modi-
fizieren des WSDL (entfernen der SwA spezifischen Eintrage) konnte auch kein brauchbaren
Stub erstellt werden.

Eines der Probleme ist das, dass .Net Framework kein SwA (SOAP Messages with Attach-
ments) unterstitzt.

Deshalb wurde ein C# Client erstellt der selber ein SOAP Request zusammenstellt und mit
dem MIME Parser SharpMimeTools die Attachments extrahiert.

Nachfolgend sind die wichtigsten Schritte dokumentiert. Eine Beispiel Applikation wurde mit
C# Visual Studio Express 2008 erstellt.

5.1 Links

Die folgenden Links enthalten zusatzliche Informationen:

e .Net Framework - http://www.microsoft.de/net

e Visual Studio Express — http://www.microsoft.com/Express/

e SharpMimeTools - http://anmar.eu.org/projects/sharpmimetools/

5.2 Marshalling / Unmarshalling in C#

Mit dem Programm Xsd.exe kann man aus den Schemas C# Klassen generieren. Die erstell-
ten C# Klassen konnen dann mit dem XmlSerializer serialisiert oder deserialisiert werden.

Xsd.exe edec_v_2 0.xsd edecSelectionAndTransit v_1 0.xsd

edecResponse_v_2 0.xsd /c /o:c:\out

Durch den Parameter /o wird angegeben wohin die generierten Klassen kopiert werden sol-
len.

5.3 SOAP Request versenden

Mit dem XmlSerializer kann man nun die Objekte in XML deserialisieren. Danach muss man
nur noch die SOAP Spezifischen Elemente (SOAP Envelope, SOAP Body und SOAP Hea-
der) hinzufigen und mittels der Klasse HttpWebRequest an die entsprechenden Endpoint
URL versenden.

FileStream fs = new FileStream(“C:\data\export.xml”, FileMode.Open);
XmlSerializer serializer = new XmlSerializer(typeof(goodsDeclarations));

goodsDeclarations declarations = (goodsDeclarations)
serializerReq.Deserialize(fs);

Web Service Entwicklung.doc

11/15

http://www.microsoft.de/net
http://www.microsoft.com/Express/
http://anmar.eu.org/projects/sharpmimetools/

Best Practice WS-Stacksl

// here you could modify goodsDeclarations
XmIWriterSettings writerSettings = new XmlWriterSettings();
writerSettings.OmitXmlDeclaration = true;

StringWriter stringWriter = new StringWriter();

using (XmIWriter xmIWriter = XmlIWriter.Create(stringWriter,
writerSettings))

{

serializerReqg.Serialize(xmlWriter, declarations);

string xmlText = stringWriter.ToString();
HttpWebRequest req = (HttpWebRequest)WebRequest.Create(url);
req.ContentType = @"text/xml;charset="""utf-8""";

req-Accept = "text.xml";

req.Method "POST";

// create soap message (with SOAP Header, Body and Envelope)
String msg = START_MSG + xmlText + END_MSG;

byte[] regBytes = System.Text.Encoding.UTF8.GetBytes(msg);
req.ContentLength = regBytes.Length;

Stream regStream = req.GetRequestStream();

// send soap request

reqStream._Write(regBytes, 0, regBytes.Length);

reqStream.Close();

5.4 SOAP Request empfangen
Das Problem beim Request ist, dass wir eine MIME Multipart Response erhalten.

Mit der Library SharpMimeTools kann man den Response Stream einer HitpWebResponse
parsen. Der Response Stream sieht wie folgt aus.

—————— = Part_118 24290992 .1232636587322

Web Service Entwicklung.doc

12/15

Best Practice WS-Stacksl

Content-Type: text/xml
Content-Description: e-dec_Export_edecResponse_ 524536839 09CHEE000000507663_1_1000054 1
Content-ID: <parameters=-15248cal:1lefdd317b9:-7cc2_O@edec.ezv.admin.ch>

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmIns:SOAP-ENV=""http://schemas.xmlsoap.org/soap/envelope/'> <SOAP-ENV:Header/>
<SOAP-ENV:Body>

</.>

Content-Type: application/pdf

Content-Transfer-Encoding: base64

Content-Description: e-dec_Export_AL_524536839_ 09CHEE000000507663_ 1 1000054_1
Content-ID: <e-dec_Export_AL=-15248cal:11lefdd317b9:-7cc3_l@edec.ezv.admin.ch>

JVBER10XLjQKJeL jzOMKOCAwWIG9i1ai ABPCIGaWx0ZX I vVRmxhdGVEZWNvVZGUVTGVuZ3Ro IDgz0T4+

Damit der Response Stream der HttpWebResponse Klasse MIME konform ist, muss man
noch einige MIME Headers hinzufiigen (Date, Content-Type und Content-Length). Diese
erhalt man aus den HTTP Header der HttpWebResponse.

Date: Thu, 22 Jan 2009 15:03:04 GMT
Content-Type: multipart/related; boundary="----=_Part_118 24290992.1232636587322"
Content-Length: 7732

Anschliessend kann man den Request Stream mit der Klasse SharpMessage, aus der Libra-
ry, MimeSharpTools parsen.

HttpWebResponse res = ..;
MemoryStream httpStream =
MemoryStream mimeStream

Encoding utf8 = Encoding.UTF8;

TextReader readerReq = new StreamReader(httpStream, utf8);
TextWriter writer = new StreamWriter(mimeStream, utf8);

// create a correct mime stream form the HttpResponseStream
// add http headers which were required for a correct mime
// format

writer_WriteLine('Date:

+ res.GetResponseHeader(*'Date'));
writer WriteLine("Content-Type: " + res.ContentType);
writer WriteLine("Content-Length: " + res.ContentlLength);
writer _WriteLine(Environment.NewLine);

// copy rest of the stream
while (true)

{

string line = readerReqg.ReadLine();
if (line == null)

Web Service Entwicklung.doc

13/15

Best Practice WS-Stacksl

{

break;

}

writer _WriteLine(line);

}

writer.Flush();

mimeStream.Position = 0;

// parse the stream for mime attachments

SharpMessage message = new SharpMessage(mimeStream,
SharpDecodeOptions.Default | SharpDecodeOptions.DecodeTnef |
SharpDecodeOptions.UuDecode);

5.5 SOAP Reugest und Attachment extrahieren

Auf Samtliche Daten (SOAP Response und Attachments) kann man mittels der Klasse
SharpMessage zugreifen.

SharpMessage message = ..;

if (message.Attachments !'= null)

{

foreach (attachment in message.Attachments)

{

Stream stream = attachment.Stream;

5.6 Client Zertifikat

Unter der folgenden Microsoft Support Seite wird erklart, wie man einem WebRequest ein
Client Zertifikat mitgeben kann.

http://support.microsoft.com/kb/895971

Web Service Entwicklung.doc

14/15

http://support.microsoft.com/kb/895971

Best Practice WS-Stacksl

6 Tools

6.1 Monitoring

Name Link
TCP Monitor https://tcpomon.dev.java.net/
WSMonitor https://wsmonitor.dev.java.net/

Web Service Entwicklung.doc

15/15

https://tcpmon.dev.java.net/
https://wsmonitor.dev.java.net/

