Schweizerische Eidgenossenschaft Eidgendssisches Finanzdepartement EFD
Confédération suisse
Confederazione Svizzera
Confederaziun svizra

Matthias Ruedlinger

Bundesamt fur Informatik und Telekommunikation BIT
Lésungszentrum

Losungen Bern

Entwicklung 1

e-dec XML Signaturprufung

Empfehlungen zur Umsetzung der Prifung von
digitalen Signaturen (WS-Security)

Projektname: e-dec
Version: 0.3
Datum: 2009-05-22
Status in Arbeit in Prifung genehmigt zur
Nutzung
O Ol

Beteiligter Personenkreis

Autoren: Matthias Ruedlinger (mru)

Genehmigung: Projektteam e-dec IDEE

Benutzer/Anwender: EzV, PL

zur Information/Kenntnis: EZV

Anderungskontrolle, Priifung, Genehmigung

Wann Version | Wer Beschreibung

2009-04-24 |0.1 mru Erste Version

2009-05-14 |0.2 mru Java Code Beispiel hinzugefiigt

2009-05-15 | 0.3 Mru, shu Anpassungen Abschnitt CRL, Anpassung des Titels

Empfehlungen fiir XML-Signaturpriifung_v0.3.doc

e-dec

Inhaltsverzeichnis

1] =T A o Yo R 3
1.1 BEMEIKUNG ... 3
1.2 RETEIBNZEN.ot e e e e e e e e et e e e e e e e eeaaaas 3
2 TOOIS / FramMEWOIKS ooviiiiiiii et e e e e e et e e e e e e e e e e bt eeeeeeas 4
3 XML Signaturprafung Mt JAVA.........ueeeeiiieiiiiiiiiie e 5
3.1 XML Digital SIGNature APcoooi it 5
3.1.1 Beispiel: XML Signatur Prufen ... 5
3.1.2 Beispiel: NamespaceContext Implementation..............covvveviiiiiiie e, 7
3.2 CRL - Certificate REVOCALION LiSt;eviiiiiiiiiiiiiiiiiiiee et 8
4 (@ TUT=1 1= o F P UOTPPR 9

2/9

Empfehlungen fiir XML-Signaturpriifung_v0.3.doc

e-dec

1 Einleitung

Dieses Dokument richtet sich an e-dec Zollkunden und Softwarelieferanten, welche die XML
Signatur einer elektronischen Veranlagungsverfiigung (eVV) tberprufen wollen.

Das Dokument beschreibt, wie die Vorgaben aus der Schnittstellenbeschreibung [1] und dem
Service Cotnract [2] fir den EdecReceiptService umgesetzt werden konnen.

Die Signaturprifung von XML Dokumenten, wurde durch die Organisation W3C spezifiziert.
Die entsprechende Spezifikation XML Signature Syntax and Processing (XMLDsig) findet
man unter folgender Adresse:

http://www.w3.org/TR/xmldsig-core/.

Um die die Signaturprifung eines XML durchfiihren zu kénnen, muss die entsprechende
Programmiersprache oder Framework den W3C Standard XML Signature Syntax and Pro-
cessing (XMLDsig) umgesetzt werden.

Die XML Signatur ist in einer SOAP Envelope eingebettet. Die Signatureinbindung im SOAP
Header erfolgt nach dem WS-Security Standard.
1.1 Bemerkung

Die Aufgeflihrten Code Beispiele sollen lediglich als Anleitung dienen wie man bei einer eVV
Antwort die Signatur und die Chain of Trust des Zertifikats Uberprift. Der Code wurde nicht
auf Performanz optimiert.

1.2 Referenzen

Die folgenden Dokumente enthalten Informationen tber die digitale Signatur bei e-dec.

Ref Titel Version
[1] Schnittstellenbeschreibung e-dec Veranlagungsverfiigung (Beschreibung 15
der eingehenden und ausgehenden Nachrichten fiir den Service)
[2] Service Contract EdecReceiptService (Beschreibung der Kommunikati- 1.3
onskanale — Web Service und E-Mail)

Empfehlungen fiir XML-Signaturpriifung_v0.3.doc

3/9

http://www.w3.org/TR/xmldsig-core/

e-dec

2 Tools / Frameworks

Folgende Liste ist eine Auswahl an Tools / Frameworks, welche man fur die XML Signatur-
prifung verwenden kann:

Tool / Framework

Beschreibung

URL

Java SE 6

In Java SE 6 hat man die Méglich-
keit mit den mitgelieferten APl XML
Signaturen zu tberprifen.

http://java.sun.com/javase/

Apache XML Security

Apache XML Security hat man eine
Library mit der man XML Signaturen
fur Java oder C++ prifen kann.

http://santuario.apache.org/

IAIK XML Security
Toolkit (XSECT)

Ist eine kommerzielle Java Library
fur die XML Signaturpriifung.

http://jce.iaik.tugraz.at

Empfehlungen fir XML-Signaturpriifung_v0.3.doc

4/9

http://java.sun.com/javase/
http://santuario.apache.org/
http://jce.iaik.tugraz.at/

e-dec

3 XML Signaturpriufung mit Java

Am besten verwendet man das XML Digital Signature APl (JSR 105) welche durch den Java
Community Process (JCP) spezifiziert ist. Nachfolgend sind einige Implementationen aufge-
listet:
e Seit Java 6 ist die XML Digital Signature API in der Java Standard Edition integriert.
e Apache XML Security ist eine freie Implementation der XML Digital Signature API.

e Das IAIK XML Security Toolkit (XSECT) ist eine kommerzielle Implementation der
XML Digital Signature API.

3.1 XML Digital Signature API

Das folgende Beispiel verwendet die Standartschnittstelle der XMI Digital Signature API und
somit spielt es keine grosse Rolle, fir welche Implementation man sich entscheidet. Einzig
bei der Registrierung des Security Providers gibt es einige Unterschiede.

Bemerkung: Bei diesem Beispiel wird die CRL der Admin PKI noch nicht tberprift.

3.1.1 Beispiel: XML Signatur prifen

Zuerst liest man das XML Dokument ein. Wichtig ist das der DocumentBuilder namespace
aware ist

InputStream is = XMLDsigClient.class.getResourceAsStream(*'eVVResponse.xml');

// create DocumentBuilderFactory which is Namespace aware
DocumentBuilderFactory builderFactory = DocumentBuilderFactory.newlnstance();
bui lderFactory.setNamespaceAware(true);

DocumentBuilder builder = builderFactory.newDocumentBuilder();
logger.info(*'Is DocumentBuilder NamespaceAware: ' + builder.isNamespaceAware());

// parse xml file (dumped soap request)
Document xmldoc = builder.parse(is);

XPath muss mit einem eigenen NamespaceContext initialisiert werden, damit man bei einer
XPath Query den Namespace verwenden kann. Der NamespaceContextimpl implementiert
das Interface NamespaceContext und muss selber erstellt werden. (Siehe Beispiel Na-
mespaceContext)

// create XPath object which has own NamespaceContext

XPath xpath = XPathFactory.newlnstance() .newXPath();

// with a custom NamespaceContext we can use Namespaces in our XPath query
NamespaceContext nsc = new NamespaceContextimpl();
Xpath.setNamespaceContext(nhsc);

Mit XPath kann man das X509 Token extrahieren. Dieses X509 Token enthéalt ein X509 Zer-
tifikat das Base64 encoded ist.

// extract x509 Token --> xml element wsse:BinarySecurityToken

Empfehlungen fir XML-Signaturpriifung_v0.3.doc

5/9

e-dec

XPathExpression expr = xpath.compile(*'//wsse:Security/wsse:BinarySecurityToken™);
Node x509Node = (Node) expr.evaluate(xmldoc, XPathConstants.NODE);

Wir kbnnen die Daten des X509 Token verwenden um ein X509 Zertifikat zu erstellen. Je-
doch muss man beim Zertifikat noch den Anfang mit ----- BEGIN CERTIFICATE----- und das
Ende durch ----- END CERTIFICATE----- markieren. Sonst kann man das Zertifikat nicht ein-
lesen.

// X509 Token is encoded in base64

String header = ""---—- BEGIN CERTIFICATE----- \n"';

String footer = "\n----- END CERTIFICATE-—--- -

// so we need a to add the certificate header and footer

// to the raw x509 data

byte[[] x509data = (header + x509Node.getTextContent() + footer).getBytes();
ByteArraylnputStream bis = new ByteArraylnputStream(x509data);

// create certificate
CertificateFactory cf = CertificateFactory.getlnstance("'X.509");

X509Certificate cert = (X509Certificate) cf.generateCertificate(bis);

Hier wird das X509 Zertifikat und Chain of Trust mittels CA Zertifikat Gberpruft. Sollte das
Zertifikat oder die Chain of Trust nicht gultig sein wird durch den
CertPathValidator.validate(...) ein Exception geworfen.

// verify ca chain

// read in ca cert

is = XMLDsigClient.class.getResourceAsStream(*'adminca-cd-t01_BIT_CA certificate.crt™);
X509Certificate caCert = (X509Certificate) cf.generateCertificate(is);

// trusted ca cert
Set<TrustAnchor> trust = Collections.singleton(nhew TrustAnchor(caCert, null));
PKIXParameters params = new PKIXParameters(trust);

// Disable CRL checking since we are not supplying any CRLs
params.setRevocationEnabled(false);

// sets the time for which the validity of the certification
// path should be determined

params.setDate(new Date());

CertPath certPath = cf.generateCertPath(Collections.singletonList(cert));

CertPathValidator certPathvValidator = CertPathValidator.getlnstance("PKIX™);

PKIXCertPathValidatorResult result = (PKIXCertPathValidatorResult) certPathvValidator
.validate(certPath, params);

Das XML Signaturelement wird mittels XPtah extrahiert und ein JSR 105 Provider initialisiert.

Hier wird der Provider explizit initialisiert, dies ist notwendig wenn z.B. mit Apache XML Se-
curity gearbeitet wird. Mit Java 6 ist schon ein XML Digital Signature API (JSR 105) Provider
registriert und dieser Schritt sollte nicht nétig sein.

// extract xml element ds:Signature

expr = xpath.compile(*'//wsse:Security/ds:Signature™);

Node dsSignature = (Node) expr.evaluate(xmldoc, XPathConstants.NODE);

DOMVal idateContext context = new DOMValidateContext(cert._getPublicKey(), dsSignature);

String providerName = System.getProperty(*'jsrl05Provider",
"'org.jcp.-xml.dsig.internal .dom.XMLDSigRI");

logger.info(*'jsr 105 provider: " + providerName);

XMLSignatureFactory factory = XMLSignatureFactory.getlnstance('DOM", (Provider) Class
. FforName(providerName) .newlnstance());

XMLSignature signature = factory.unmarshalXMLSignature(context);

Empfehlungen fir XML-Signaturpriifung_v0.3.doc

6/9

e-dec

Die XML Signatur wird mit dem DOMValidateContext tUberprift. Dieser besitzt den Public
Key und eine Referenz auf das XML Signaturelement.

// Check core validation status
boolean corevValidity = signature.validate(context);

ifT (corevalidity == false) {

logger.error('Signature failed core validation!™);
boolean sv = signature.getSignatureValue().validate(context);
logger.info('Signature validation status: " + sv);

// Check the validation status of each Reference
Iterator<Reference> i = signature.getSignedInfo().getReferences().iterator();

for (int j = 0; i.hasNext(Q); j++) {
// signature was not valid so try to find out which refrence was invalid
Reference ref = i.next();
boolean refvalid = ref.validate(context);
String id = ref.getURI();
logger.info("'Reference (" + j + ") with URI [™ + id + "] validation status: "
+ refvalid);
}

else {
logger.info(''Signature passed core validation!™);

}

3.1.2 Beispiel: NamespaceContext Implementation

Dies ist die NamespaceContext Implementation welche alle nétigen Namespaces der eVV
Response kennt. Der NamespaceContext wird benétigt, damit man XPath Abfragen mit den
entsprechenden Préfixes machen kann. Es wird so das Mapping zwischen Préafixes und Na-
mespaces sichergestellt.

public class NamespaceContextImpl implements NamespaceContext{

public static final String NS_URI_WSSE = "http://docs.oasis-open.org/wss/2004/01/o0asis-
200401-wss-wssecurity-secext-1.0.xsd";

public static final String PREFIX_WSSE = "wsse';

public static final String NS_URI_SOAP_ENV = "http://schemas.xmlsoap.org/soap/envelope/";

public static final String PREFIX_SOAP_ENV = "soap";

public static final String NS_URI_XMLDSIG = "http://www.w3.0rg/2000/09/xmldsig#";

public static final String PREFIX_XMLDSIG = “ds";

public static final String NS_URI_EVV = "http://www.e-
dec.ch/xml/schema/edecReceiptResponse/v1™;

public static final String PREFIX_EVV = "ewv";

private Map<String, String> value = new HashMap<String, String>();

public NamespaceContextimpl() {
value.put(PREFIX_EVV, NS_URI_EW);
value.put(PREFIX_SOAP_ENV, NS_URI_SOAP_ENV);
value.put(PREFIX_WSSE, NS_URI_WSSE);
value.put(PREFIX_XMLDSIG, NS_URI_XMLDSIG);

¥

public String getNamespaceURI(String prefix) {
return value.get(prefix);
}

public String getPrefix(String uri) {
throw new UnsupportedOperationException();
}

public lterator<String> getPrefixes(String uri) {
throw new UnsupportedOperationException();
}

}

Empfehlungen fir XML-Signaturpriifung_v0.3.doc

719

e-dec
3.2 CRL - Certificate Revocation List;

Die CRL wird in diesem Code Beispiel noch nicht Uberpruft. Ein Certificate Revocation List
(CRL) erhélt man tber die Admin PKI Homepage.

http://www.pki.admin.ch/crl.php

8/9

Empfehlungen fiir XML-Signaturpriifung_v0.3.doc

http://www.pki.admin.ch/crl.php

e-dec

4 Quellen

Spezifikation XML Signature Syntax and Processing (XMLDsig)
http://www.w3.0org/TR/xmldsig-core/

XMI Digital Signature APl (JSR 105)
http://jcp.org/en/jsr/detail?id=105

Apache XML Security
http://santuario.apache.org/

IAIK XML Security Toolkit (XSECT)
http://jce.iaik.tugraz.at/sic/products/xml|_security/xsect

Artikel: XML Signature with JSR-105 in Java SE 6
http://today.java.net/pub/a/today/2006/11/21/xml-signature-with-jsr-105.html?page=1

Artikel: Using JSR 105 with JDK 1.4 or 1.5
http://weblogs.java.net/blog/mullan/archive/2008/02/using jsr 105 w_ 1.html

Prasentation: XML Security and JSR 105-106
http://www.parleys.com/display/PARLEYS/XML+Security+and+JSR+105-106

9/9

Empfehlungen fir XML-Signaturpriifung_v0.3.doc

http://www.w3.org/TR/xmldsig-core/
http://jcp.org/en/jsr/detail?id=105
http://santuario.apache.org/
http://jce.iaik.tugraz.at/sic/products/xml_security/xsect
http://today.java.net/pub/a/today/2006/11/21/xml-signature-with-jsr-105.html?page=1
http://weblogs.java.net/blog/mullan/archive/2008/02/using_jsr_105_w_1.html
http://www.parleys.com/display/PARLEYS/XML+Security+and+JSR+105-106

