
 
 

Eidgenössisches Finanzdepartement EFD 

Bundesamt für Informatik und Telekommunikation BIT 
Lösungszentrum 
Lösungen Bern 
Entwicklung 1 

Empfehlungen für XML-Signaturprüfung_v0.3.doc 
 

 

Matthias Rüedlinger  
 

e-dec XML Signaturprüfung 

Empfehlungen zur Umsetzung der Prüfung von 
digitalen Signaturen (WS-Security) 
 

Projektname: e-dec 
Version: 0.3 
Datum: 2009-05-22 

  
Status in Arbeit in Prüfung genehmigt zur 

Nutzung 
    
 

Beteiligter Personenkreis 
Autoren: Matthias Rüedlinger (mru) 
Genehmigung: Projektteam e-dec IDEE 
Benützer/Anwender: EZV, PL 
zur Information/Kenntnis: EZV 

 

Änderungskontrolle, Prüfung, Genehmigung 
Wann Version Wer Beschreibung 
2009-04-24 0.1 mru Erste Version 
2009-05-14 0.2 mru Java Code Beispiel hinzugefügt 
2009-05-15 0.3 Mru, shu Anpassungen Abschnitt CRL, Anpassung des Titels 
    
    
        
        

 



e-dec 
 

Inhaltsverzeichnis 

2/9

Empfehlungen für XML-Signaturprüfung_v0.3.doc 
 

1 Einleitung ..................................................................................................................3 
1.1 Bemerkung.............................................................................................................3 
1.2 Referenzen.............................................................................................................3 
2 Tools / Frameworks ..................................................................................................4 
3 XML Signaturprüfung mit Java................................................................................5 
3.1 XML Digital Signature API......................................................................................5 
3.1.1 Beispiel: XML Signatur prüfen ...........................................................................5 
3.1.2 Beispiel: NamespaceContext Implementation...................................................7 
3.2 CRL - Certificate Revocation List; ..........................................................................8 
4 Quellen.......................................................................................................................9 
 



e-dec 
 

3/9

1 Einleitung 
Dieses Dokument richtet sich an e-dec Zollkunden und Softwarelieferanten, welche die XML 
Signatur einer elektronischen Veranlagungsverfügung (eVV) überprüfen wollen. 

Das Dokument beschreibt, wie die Vorgaben aus der Schnittstellenbeschreibung [1] und dem 
Service Cotnract [2] für den EdecReceiptService umgesetzt werden können. 

Die Signaturprüfung von XML Dokumenten, wurde durch die Organisation W3C spezifiziert. 
Die entsprechende Spezifikation XML Signature Syntax and Processing (XMLDsig) findet 
man unter folgender Adresse: 

http://www.w3.org/TR/xmldsig-core/.  

Um die die Signaturprüfung eines XML durchführen zu können, muss die entsprechende 
Programmiersprache oder Framework den W3C Standard XML Signature Syntax and Pro-
cessing (XMLDsig) umgesetzt werden. 

Die XML Signatur ist in einer SOAP Envelope eingebettet. Die Signatureinbindung im SOAP 
Header erfolgt nach dem WS-Security Standard. 

1.1 Bemerkung 

Die Aufgeführten Code Beispiele sollen lediglich als Anleitung dienen wie man bei einer eVV 
Antwort die Signatur und die Chain of Trust des Zertifikats überprüft. Der Code wurde nicht 
auf Performanz optimiert.  

1.2 Referenzen 

Die folgenden Dokumente enthalten Informationen über die digitale Signatur bei e-dec. 

Ref Titel Version 
[1] Schnittstellenbeschreibung e-dec Veranlagungsverfügung (Beschreibung 

der eingehenden und ausgehenden Nachrichten für den Service) 
1.5 

[2] Service Contract EdecReceiptService (Beschreibung der Kommunikati-
onskanäle – Web Service und E-Mail) 

1.3 

 

Empfehlungen für XML-Signaturprüfung_v0.3.doc 
 

http://www.w3.org/TR/xmldsig-core/


e-dec 
 

4/9

2 Tools / Frameworks 
Folgende Liste ist eine Auswahl an Tools / Frameworks, welche man für die XML Signatur-
prüfung verwenden kann: 

Tool / Framework Beschreibung URL 
Java SE 6 In Java SE 6 hat man die Möglich-

keit mit den mitgelieferten API XML 
Signaturen zu überprüfen. 

http://java.sun.com/javase/  

Apache XML Security Apache XML Security hat man eine 
Library mit der man XML Signaturen 
für Java oder C++ prüfen kann. 

http://santuario.apache.org/  

IAIK XML Security 
Toolkit (XSECT) 

Ist eine kommerzielle Java Library 
für die XML Signaturprüfung. 

http://jce.iaik.tugraz.at  

 

Empfehlungen für XML-Signaturprüfung_v0.3.doc 
 

http://java.sun.com/javase/
http://santuario.apache.org/
http://jce.iaik.tugraz.at/


e-dec 
 

5/9

3 XML Signaturprüfung mit Java 
Am besten verwendet man das XML Digital Signature API (JSR 105) welche durch den Java 
Community Process (JCP) spezifiziert ist. Nachfolgend sind einige Implementationen aufge-
listet:  

• Seit Java 6 ist die XML Digital Signature API in der Java Standard Edition integriert. 

• Apache XML Security ist eine freie Implementation der XML Digital Signature API. 

• Das IAIK XML Security Toolkit (XSECT) ist eine kommerzielle Implementation der 
XML Digital Signature API. 

3.1 XML Digital Signature API 

Das folgende Beispiel verwendet die Standartschnittstelle der XMl Digital Signature API und 
somit spielt es keine grosse Rolle, für welche Implementation man sich entscheidet. Einzig 
bei der Registrierung des Security Providers gibt es einige Unterschiede. 

Bemerkung: Bei diesem Beispiel wird die CRL der Admin PKI noch nicht überprüft. 

3.1.1 Beispiel: XML Signatur prüfen 

Zuerst liest man das XML Dokument ein. Wichtig ist das der DocumentBuilder namespace 
aware ist 

       
      InputStream is = XMLDsigClient.class.getResourceAsStream("eVVResponse.xml"); 
 
      // create DocumentBuilderFactory which is Namespace aware 
      DocumentBuilderFactory builderFactory = DocumentBuilderFactory.newInstance(); 
      builderFactory.setNamespaceAware(true); 
 
      DocumentBuilder builder = builderFactory.newDocumentBuilder(); 
      logger.info("Is DocumentBuilder NamespaceAware: " + builder.isNamespaceAware()); 
 
      // parse xml file (dumped soap request) 
      Document xmldoc = builder.parse(is); 
 
 

XPath muss mit einem eigenen NamespaceContext initialisiert werden, damit man bei einer 
XPath Query den Namespace verwenden kann. Der NamespaceContextImpl implementiert 
das Interface NamespaceContext und muss selber erstellt werden. (Siehe Beispiel Na-
mespaceContext)  

 
 
      // create XPath object which has own NamespaceContext 
      XPath xpath = XPathFactory.newInstance().newXPath(); 
      // with a custom NamespaceContext we can use Namespaces in our XPath query 
      NamespaceContext nsc = new NamespaceContextImpl(); 
      xpath.setNamespaceContext(nsc); 
 
 

Mit XPath kann man das X509 Token extrahieren. Dieses X509 Token enthält ein X509 Zer-
tifikat das Base64 encoded ist. 

 
      // extract x509 Token --> xml element wsse:BinarySecurityToken 

Empfehlungen für XML-Signaturprüfung_v0.3.doc 
 



e-dec 
 

      XPathExpression expr = xpath.compile("//wsse:Security/wsse:BinarySecurityToken"); 

6/9

Empfehlungen für XML-Signaturprüfung_v0.3.doc 
 

      Node x509Node = (Node) expr.evaluate(xmldoc, XPathConstants.NODE); 
 
 

Wir können die Daten des X509 Token verwenden um ein X509 Zertifikat zu erstellen. Je-
doch muss man beim Zertifikat noch den Anfang mit -----BEGIN CERTIFICATE----- und das 
Ende durch -----END CERTIFICATE----- markieren. Sonst kann man das Zertifikat nicht ein-
lesen. 

 
      // X509 Token is encoded in base64 
      String header = "-----BEGIN CERTIFICATE-----\n"; 
      String footer = "\n-----END CERTIFICATE-----"; 
      // so we need a to add the certificate header and footer 
      o the raw x509 data // t
      byte[] x509data = (header + x509Node.getTextContent() + footer).getBytes(); 
      ByteArrayInputStream bis = new ByteArrayInputStream(x509data); 
 
      // create certificate 
      CertificateFactory cf = CertificateFactory.getInstance("X.509"); 

      X509Certificate cert = (X509Certificate) cf.generateCertificate(bis); 

 

Hier wird das X509 Zertifikat und Chain of Trust mittels CA Zertifikat überprüft. Sollte das 
Zertifikat oder die Chain of Trust nicht gültig sein wird durch den  
CertPathValidator.validate(…) ein Exception geworfen. 

 
      // verify ca chain 
      // read in ca cert 
      is = XMLDsigClient.class.getResourceAsStream("adminca-cd-t01_BIT_CA_certificate.crt"); 
      X509Certificate caCert = (X509Certificate) cf.generateCertificate(is); 
 
      // trusted ca cert 
      Set<TrustAnchor> trust = Collections.singleton(new TrustAnchor(caCert, null)); 
      PKIXParameters params = new PKIXParameters(trust); 
 
      // Disable CRL checking since we are not supplying any CRLs 
      params.setRevocationEnabled(false); 
      // sets the time for which the validity of the certification 
      // path should be determined 
      params.setDate(new Date()); 
 
      CertPath certPath = cf.generateCertPath(Collections.singletonList(cert)); 
      CertPathValidator certPathValidator = CertPathValidator.getInstance("PKIX"); 
      PKIXCertPathValidatorResult result = (PKIXCertPathValidatorResult) certPathValidator 
          .validate(certPath, params); 
 

 
Das XML Signaturelement wird mittels XPtah extrahiert und ein JSR 105 Provider initialisiert. 
Hier wird der Provider explizit initialisiert, dies ist notwendig wenn z.B. mit Apache XML Se-
curity gearbeitet wird. Mit Java 6 ist schon ein XML Digital Signature API (JSR 105) Provider 
registriert und dieser Schritt sollte nicht nötig sein. 

 
      // extract xml element ds:Signature 
      expr = xpath.compile("//wsse:Security/ds:Signature"); 
      Node dsSignature = (Node) expr.evaluate(xmldoc, XPathConstants.NODE); 
 
      DOMValidateContext context = new DOMValidateContext(cert.getPublicKey(), dsSignature); 
 
      String providerName = System.getProperty("jsr105Provider", 
          "org.jcp.xml.dsig.internal.dom.XMLDSigRI"); 
 
      logger.info("jsr 105 provider: " + providerName); 
       
      XMLSignatureFactory factory = XMLSignatureFactory.getInstance("DOM", (Provider) Class 
          .forName(providerName).newInstance()); 
 
      XMLSignature signature = factory.unmarshalXMLSignature(context); 
 



e-dec 
 

 

7/9

Empfehlungen für XML-Signaturprüfung_v0.3.doc 
 

 

Die XML Signatur wird mit dem DOMValidateContext überprüft. Dieser besitzt den Public 
Key und eine Referenz auf das XML Signaturelement. 

      // Check core validation status 
      boolean coreValidity = signature.validate(context); 
 
      if (coreValidity == false) { 
 
        logger error("Signature failed core validation!"); .
        boolean sv = signature.getSignatureValue().validate(context); 
        logger.info("Signature validation status: " + sv); 
 
        // Check the validation status of each Reference 
        Iterator<Reference> i = signature.getSignedInfo().getReferences().iterator(); 
 
        for (int j = 0; i.hasNext(); j++) { 
          // signature was not valid so try to find out which refrence was invalid 
          Reference ref = i.next(); 
          boolean refValid = ref.validate(context); 
          String id = ref.getURI(); 
          logger.info("Reference (" + j + ") with URI [" + id + "] validation status: "  
               + refValid); 
        } 
      } 
      else { 
        logger.info("Signature passed core validation!"); 

      } 

3.1.2 Beispiel: NamespaceContext Implementation 

Dies ist die NamespaceContext Implementation welche alle nötigen Namespaces der eVV 
Response kennt. Der NamespaceContext wird benötigt, damit man XPath Abfragen mit den 
entsprechenden Präfixes machen kann. Es wird so das Mapping zwischen Präfixes und Na-
mespaces sichergestellt. 

public class NamespaceContextImpl implements NamespaceContext{ 
 
  public static final String NS_URI_WSSE = "http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-wssecurity-secext-1.0.xsd"; 
  public static final String PREFIX_WSSE = "wsse";   
  public static final String NS_URI_SOAP_ENV = "http://schemas.xmlsoap.org/soap/envelope/"; 
  public static final String PREFIX_SOAP_ENV = "soap";     
  public static final String NS_URI_XMLDSIG = "http://www.w3.org/2000/09/xmldsig#"; 
  public static final String PREFIX_XMLDSIG = "ds";   
  public static final String NS_URI_EVV = "http://www.e-
dec.ch/xml/schema/edecReceiptResponse/v1"; 
  public static final String PREFIX_EVV = "evv";   
  private Map<String, String> value = new HashMap<String, String>();     
   
  public NamespaceContextImpl() {     
    value.put(PREFIX_EVV, NS_URI_EVV); 
    value.put(PREFIX_SOAP_ENV, NS_URI_SOAP_ENV); 
    value.put(PREFIX_WSSE, NS_URI_WSSE); 
    value.put(PREFIX_XMLDSIG, NS_URI_XMLDSIG);         
  } 
   
  public tring getNamespaceURI(String prefix) {  S
    return value.get(prefix); 
  } 
 
   S rinpublic t g getPrefix(String uri) { 
    throw new UnsupportedOperationException(); 
  } 
  
  public Iterator<String> getPrefixes(String uri) { 
    throw new UnsupportedOperationException(); 
  } 

} 



e-dec 
 

3.

8/9

Empfehlungen für XML-Signaturprüfung_v0.3.doc 
 

2 CRL - Certificate Revocation List; 

Die CRL wird in diesem Code Beispiel noch nicht überprüft. Ein Certificate Revocation List  
(CRL) erhält man über die Admin PKI Homepage. 

http://www.pki.admin.ch/crl.php 

http://www.pki.admin.ch/crl.php


e-dec 
 

9/9

4 Quellen 
Spezifikation XML Signature Syntax and Processing (XMLDsig) 
http://www.w3.org/TR/xmldsig-core/  

XMl Digital Signature API (JSR 105) 
http://jcp.org/en/jsr/detail?id=105 

Apache XML Security 
http://santuario.apache.org/ 

IAIK XML Security Toolkit (XSECT) 
http://jce.iaik.tugraz.at/sic/products/xml_security/xsect  

Artikel: XML Signature with JSR-105 in Java SE 6 
http://today.java.net/pub/a/today/2006/11/21/xml-signature-with-jsr-105.html?page=1 

Artikel: Using JSR 105 with JDK 1.4 or 1.5 
http://weblogs.java.net/blog/mullan/archive/2008/02/using_jsr_105_w_1.html  

Präsentation: XML Security and JSR 105-106 
http://www.parleys.com/display/PARLEYS/XML+Security+and+JSR+105-106  

Empfehlungen für XML-Signaturprüfung_v0.3.doc 
 

http://www.w3.org/TR/xmldsig-core/
http://jcp.org/en/jsr/detail?id=105
http://santuario.apache.org/
http://jce.iaik.tugraz.at/sic/products/xml_security/xsect
http://today.java.net/pub/a/today/2006/11/21/xml-signature-with-jsr-105.html?page=1
http://weblogs.java.net/blog/mullan/archive/2008/02/using_jsr_105_w_1.html
http://www.parleys.com/display/PARLEYS/XML+Security+and+JSR+105-106

